ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:3.04MB ,
资源ID:726241      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-726241-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017-2018学年高中数学苏教版选修2-3教学案:第1章 1-1 两个基本计数原理 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017-2018学年高中数学苏教版选修2-3教学案:第1章 1-1 两个基本计数原理 WORD版含答案.doc

1、第1课时分类计数原理与分步计数原理12016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,每天有7次航班,5列火车问题1:该志愿者从北京到南京可乘的交通工具可分为几类?提示:两类,即乘飞机、乘火车问题2:这几类方法相同吗?提示:不同问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7512(种)2甲盒中有3个不同的红球,乙盒中有5个不同的白球,某同学要从甲盒或乙盒中摸出一球问题4:不同的摸法有多少种?提示:358(种)3某班有男生26人,女生24人,从中选一位同学为生活委员问题5:不同选法的种数为多少?提示:262450.完成一件事,有n类方式,在第1类方式中有m

2、1种不同的方法,在第2类方式中有m2种不同的方法,在第n类方式中有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法.12016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,但需在天津停留,已知从北京到天津有7次航班,从天津到南京有5列火车问题1:该志愿者从北京到南京需要经历几个步骤?提示:两个,即从北京到天津、从天津到南京问题2:这几个步骤之间相互有影响吗?提示:没有,第一个步骤采取什么方式完成与第二个步骤采用的方式没有任何关系问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7535 种2若x2,3,5,y6,7,8问题4:能组成的集合x,y的个数

3、为多少?提示:339(个)3某班有男生26人,女生24人,从中选一位男同学和一位女同学担任生活委员问题5:不同的选法的种数为多少?提示:2624624种完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法1分类计数原理中的每一种方法都可以完成这件事情,而分步计数原理的每一个步骤只是完成这件事情的中间环节,不能独立完成这件事情2分类计数原理考虑的是完成这件事情的方法被分成不同的类别,求各类方法之和;而分步计数原理考虑的是完成这件事情的过程被分成不同的步骤,求各步骤方法之积例1某单位职工义务献

4、血,在体检合格的人中,O型血的共有29人,A型血的共有7人,B型血的共有9人,AB型血的共有3人,从中任选1人去献血,共有多少种不同的选法?思路点拨先按血型分类,再求每一类的选法,然后求和精解详析从中选1人去献血的方法共有4类:第一类:从O型血的人中选1人去献血共有29种不同的方法;第二类:从A型血的人中选1人去献血共有7种不同的方法;第三类:从B型血的人中选1人去献血共有9种不同的方法;第四类:从AB型血的人中选1人去献血共有3种不同的方法利用分类计数原理,可得选1人去献血共有2979348种不同的选法一点通利用分类计数原理,首先搞清要完成的“一件事”是什么,其次确定一个合理的分类标准,将完

5、成“这件事”的方法进行分类;然后,对每一类中的方法进行计数,最后由分类计数原理计算总方法数1从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出1种种植,不同的种植方法有_种解析:分4种品种种植,根据分类计数原理可知,共有4种不同的种植方法答案:42所有边长均为整数,且最大边长均为11的三角形的个数为_解析:假设另两边长分别为a,b(a,bZ),不妨设ab11,要构成三角形,必有ab12,因此b6.当b11时,a可取1,2,3,11;当b10时,a可取2,3,10;当b6时,a只能是6.故所有三角形的个数为119753136.答案:363在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自

6、己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学数学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学可以选择A,B两所大学中的一所,在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,因此根据分类计数原理,这名同学可能的专业选择共有549(种).例2要安排一份 5 天的值班表,每天有一个人值班,共有 5 个人,每个人值多天或不值班,但相邻两天不准由同一个人值班,此值班表共有多少种不同的排法?思路点拨该问题是计数问题,完成一件事是排值班表,因而需一天一天的排,用分步计数原理,分步进行精解详析先排第一天,可排5人中任一人,有 5

7、种排法;再排第二天,此时不能排第一天已排的人,有 4 种排法;再排第三天,此时不能排第二天已排的人,有 4 种排法;同理,第四、五天各有 4 种排法由分步计数原理可得值班表不同的排法共有:N544441 280 (种)一点通利用分步计数原理解决问题应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事4. 用6种不同的颜色给图中的“笑脸”涂色,要“眼睛”(如图A,B所示区域)用相同颜色,则不同的涂色方法共有_种解析:第1步涂眼睛有6种涂法,第2步涂鼻子有6种涂法,第三步涂嘴有6种涂法,所以共有63216种涂法答案:

8、2165现有4件不同款式的上衣和3条不同颜色的长裤,若一条长裤与一件上衣配成一套,则不同的配法种数为_解析:要完成长裤与上衣配成一套,分两步:第一步,选上衣,从4件中任选一件,有4种不同选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法故共有4312种不同的配法答案:126已知集合M3,2,1,0,1,2,P(a,b)(a,bM)表示平面上的点,问:(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限内的点?解:(1)确定平面上的点P(a,b),可分两步完成:第一步确定a的值,有6种不同方法;第二步确定b的值,也有6种不同方法根据分步计数原理,得到平面上点P的个数

9、为6636.(2)确定平面上第二象限内的点P,可分两步完成:第一步确定a的值,由于a0,所以有2种不同方法由分步计数原理,得到平面上第二象限内的点P的个数为326.例3有一项活动,需在3名老师,8名男同学和5名女同学中选人参加(1)若只需一人参加,有多少种不同选法?(2)若需老师、男同学、女同学各一人参加,有多少种不同选法?(3)若需一名老师,一名学生参加,有多少种不同选法?思路点拨(1)从老师、男、女同学中选 1人,用分类计数原理(2)从老师、男、女同学中各选1人,用分步计数原理(3)分类计数原理与分步计数原理的综合精解详析(1)有三类选人的方法:3名老师中选一人,有3种方法;8名男同学中选

10、一人,有8种方法;5名女同学中选一人,有5种方法由分类计数原理,共有38516种选法(2)分三步选人:第一步选老师,有3种方法;第二步选男同学,有8种方法;第三步选女同学,有5种方法由分步计数原理,共有385120种选法(3)可分两类,每一类又分两步第一类:选一名老师再选一名男同学,有3824种选法;第二类:选一名老师再选一名女同学,共有3515种选法由分类计数原理,共有241539种选法一点通用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性7若直线

11、方程AxBy0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的直线共有_条解析:解决这件事分两类完成:第1类,当A或B中有一个为0时,表示直线为y0或x0,共2条;第2类,当A,B都不为0时,直线AxBy0被确定需分两步完成第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法由分步计数原理,共可确定4312(条)直线所以由分类计数原理,方程所表示的不同直线共有21214(条)答案:148从5名医生和8名护士中选出1名医生和1名护士组成一个两人医疗组,共有_种不同的选法解析:完成这件事需分两步:第一步,从5名医生中选一名,有5种不同的选法;第

12、二步,从8名护士中选一名,有8种不同的选法,故共有5840种不同的选法答案:409某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息(1)若小明的爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?解:(1)小明的爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法根据分类计数原理,小明的爸爸共有8614种坐法(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8614个凳子中选一个坐下,共有14种坐法;第二步,小明的爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,(

13、小明坐下后,空闲凳子数变成13)共13种坐法由分步计数原理,小明与爸爸分别就坐共有1413182种坐法1利用分类计数原理解题的步骤(1)分类:理解题意,确定分类标准,做到不重不漏;(2)计数:求出每一类中的方法数;(3)结论:将每一类中的方法数相加得最终结果2利用分步计数原理解题的步骤(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果课下能力提升(一)一、填空题1一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这项工作,不同选法有_种解析:由分类计数原理知,有358种不同的

14、选法答案:82有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有_种解析:分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师选有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法共有33119种监考的方法答案:933名学生报名参加艺术体操、美术、计算机、游泳课外兴趣小组,每人选报一种,则不同的报名种数有_种解析:第1名学生有4种选报方法;第2、3名学生也各有4种选报方法,因此,根据分步计数原理,不同的报名种数有44464.答案:644某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成如

15、果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_种(用数字作答)解析:分两类,第一棒是丙有12432148(种);第一棒是甲、乙中一人有21432148(种),根据分类计数原理得:共有方案484896(种)答案:965从集合A1,2,3,4中任取2个数作为二次函数yx2bxc的系数b,c,且bc,则可构成_个不同的二次函数解析:分成两个步骤完成:第一步选出b,有4种方法;第二步选出c,由于bc,则有3种方法根据分步计数原理得:共有4312个不同的二次函数答案:12二、解答题6从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列

16、,这样的等比数列有多少个?解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个7已知a3,4,6,b1,2,7,8,r8,9,则方程(xa)2(yb)2r2可表示多少个不同的圆?解:按a,b,r取值顺序分步考虑:第一步:a从3,4,6中任取一个数,有3种取法;第二步:b从1,2,7,8中任取一个数,有4种取法;第三步:r从8、9中任取一个数,有2种取法;由分步计数原理知,表示的不同圆有N34224(个)8书架上层放有6本不同的数学书,下层放有5本不

17、同的语文书(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取一本数学书,有6种方法;第二类方法是从下层取一本语文书,有5种方法根据分类计数原理,得到不同的取法的种数是6511.答:从书架上任取一本书,有11种不同的取法(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种取法;第二步取一本语文书,有5种取法根据分步计数原理,得到不同的取法的种数是6530.答:从书架上取数学书与语文书各一本,有30种不同的取法第2课时分类计数原理与分步计数原理的应用例1从

18、0,1,2,3,4,5这些数字中选出4个,能组成多少个无重复数字且能被5整除的四位数?思路点拨能被5整除的数分为末位数字为0及末位数字为5两类精解详析满足条件的四位数可分为两类:第一类是0在末位的,需确定前三位数,分三步完成,第一步:确定首位有5种方法;第二步,确定百位有4种方法;第三步,确定十位有3种方法所以第一类共有54360(个)第二类是5在末位,前三位数也分三步完成第一步确定首位有4种方法,第二步,确定百位有4种方法,第三步确定十位有3种方法第二类共有44348(个)所以,满足条件的四位数共有6048108(个)一点通对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中

19、再按特殊位置(或者特殊元素)优先的方法分步完成如果正面分类较多,可采用间接法从反面求解1.将1,2,3填入33的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有_种123312231解析:由于33方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起如图中的,当全为1时,有2种(即第一行第2列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定),当全为2或3时,分别有2种,共有6种;当分别为1,2,3时,也共有6种,共12种答案:122由0,1,2,3,9十个数字和一个虚数单位可以组成虚数的个数为_解析:复数abi(a,bR)为虚数,则

20、a有10种选法,b有9种选法,根据分步计数原理,共计90种选法答案:903从 1,2,3,4 中选三个数字,组成无重复数字的整数,问:满足下列条件的数有多少个?(1)三位数;(2)三位偶数解:(1)三位数有三个数位,故可分三个步骤完成:第一步,排个位,从1,2,3,4 中选 1 个数字,有 4 种方法;第二步,排十位,从剩下的 3 个数字中选 1 个,有 3 种方法;第三步,排百位,可以从剩下的 2 个数字中选 1 个,有 2 种方法根据分步计数原理,共有43224 个满足要求的三位数(2)分三个步骤完成:第一步,排个位,从2,4中选1个,有2种方法;第二步,排十位,从余下的3个数字中选1个,

21、有3种方法;第三步,排百位,只能从余下的2个数字中选1个,有2种方法故共有23212个三位偶数.例2如图,要给地图A,B,C,D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?思路点拨根据地图的特点确定涂色的顺序,再进行计算,注意分类讨论精解详析按地图A,B,C,D四个区域依次涂色,分四步完成:第一步,涂A区域,有3种选择;第二步,涂B区域,有2种选择;第三步,涂C区域,由于它与A,B区域颜色不同,有1种选择;第四步,涂D区域,由于它与B,C区域颜色不同,有1种选择所以根据分步计数原理,得到不同的涂色方案种数共有32116.一

22、点通给区域涂色(种植)问题的一般思路:为了便于分析问题,先给区域(种植的品种)标上相应序号,然后按涂色(种植)的顺序分步或颜色(种植的品种)当选情况分类,最后利用两个原理计数4如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同种法的种数为_种解析:先种A地有4种,再种B地有3种,若C地与A地种相同的花,则C地有1种D地有3种;若C地与A地种不同花,则C地有2种,D地有2种,即不同种法的种数为N43(1322)84.答案:845如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90仍为L型图案),那么在由

23、45个小方格组成的方格纸上可以画出不同位置的L型图案的个数是_解析:因为每四个小方格(22型)中有L型图案4个,共有22型小方格12个,所以共有L型图案41248(个)答案:486. 将红、黄、绿、黑四种不同的颜色涂入如图所示的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?解:当B与D同色时,有4321248种不同的涂色方法; 当B与D不同色时,有4321124种不同的涂色方法故共有482472种不同的涂色方法.例3有四位同学参加三项不同的竞赛(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?思路点拨(1)分

24、四步,让每一位同学都选择一项竞赛;(2)分三步,每一项竞赛都有一名同学参加精解详析(1)学生可以选择竞赛项目,而竞赛项目对于学生无条件限制,所以每位学生均有3个不同的机会要完成这件事必须是每位学生参加的竞赛全部确定下来才行,因此需分四步而每位学生均有3个不同机会,所以用分步计数原理可得33333481种不同结果(2)竞赛项目可挑选学生,而学生无选择项目的机会,每一个项目可挑选4位不同学生中的一位要完成这件事必须是每项竞赛所参加的学生全部确定下来才行,因此需分三步,用分步计数原理可得4444364种不同结果一点通解答此题,每位学生选定竞赛或每项竞赛选定学生对完成整个事件的影响至关重要,否则容易把

25、两问结果混淆,其原因是对题意的理解不清,对事情完成的方式有错误的认识7保持例题条件不变,若每位学生只能参加一项竞赛,且每项竞赛只许一位学生参加,则有_种不同结果解析:第一个项目可挑选4位学生中的一位,有4种不同的选法;第二个项目可从剩余的3位学生中选一位,有3种不同的选法;第三个项目可从剩余的2位学生中选一位,有2种不同的选法故共有43224种不同结果答案:248(1)8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?(2)将4封信投入3个邮筒,有多少种不同的投法?(3)3位旅客到4个旅馆住宿,有多少种不同的住宿方法?解:(1)分三步,每位同学取书一本,第1,2,3个同学分别有

26、8,7,6种取法,因而由分步计数原理,不同分法共有N876336(种)(2)完成这件事情可以分作四步,第一步,投第一封信,可以在3个邮筒中任选一个,因此有3种投法;第二步,投第二封信,同样有3种投法;第三步,投第三封信,也同样有3种投法;第四步,投第四封信,仍然有3种投法由分步计数原理,可得出不同的投法共有N333381种(3)分三步,每位旅客都有4种不同的住宿方法,因而不同的方法共有N44464种两个计数原理在解决实际问题时常采用的方法课下能力提升(二)一、填空题1用1,2,3,4可组成_个三位数解析:组成三位数这件事可分为三步完成:第一步,确定百位,共有4种选择方法;第二步,确定十位,共有

27、4种选择方法;第三步,确定个位,共有4种选择方法,由分步计数原理可知,可组成44464个三位数答案:642若在登录某网站时弹出一个4位的验证码:XXXX(如2a8t),第一位和第三位分别为0到9这10个数字中的一个,第二位和第四位分别为a到z这26个英文字母中的一个,则这样的验证码共有_个解析:要完成这件事可分四步:第一步,确定验证码的第一位,共有10种方法;第二步,确定验证码的第二位,共有26种方法;第三步,确定验证码的第三位,共有10种方法;第四步,确定验证码的第四位,共有26种方法由分步计数原理可得,这样的验证码共有1026102667 600个答案:67 6003集合Px,1,Qy,1

28、,2,其中x,y1,2,3,9,且PQ.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是_解析:当x2时,xy,点的个数为177;当x2时,xy,点的个数为717,则共有14个点答案:144某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为_解析:每封电子邮件都有3种不同的发法,由分步计数原理可得,共有35243种不同的发送方法答案:2435. 如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有_种解析:从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,故不同涂法有654(1

29、3)480(种)答案:480二、解答题6某校学生会由高一年级5人,高二年级6人,高三年级4人组成(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择由分类计数原理,共有56415种选法(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择由分步计数原理,共有56412

30、0种选法(3)分三类:高一、高二各一人,共有5630种选法;高一、高三各一人,共有5420种选法;高二、高三各一人,共有6424种选法;由分类计数原理,共有30202474种选法7用0,1,9这十个数字,可以组成多少个(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?解:由于0不可在最高位,因此应对它进行单独考虑(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步计数原理知,适合题意的三位数共有91010900 个(2)由于数字不可重复,可知百位的数字有9种选择,十位的数字也有9种选择,但个位数字仅有8种选择,由分步计数原理知,适合题意的三位数

31、共有998648个(3)百位只有4种选择,十位可有9种选择,个位数字有8种选择,由分步计数原理知,适合题意的三位数共有498288个8.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻(有公共边)的盒子中,求不同的放法有多少种解:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3216种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3216种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C,D,E,有6种不同的放法,根据分步计数原理得,有332118种不同的放法综上所述,由分类计数原理得不同的放法共有661830种

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3