1、阶段质量检测(二)概率考试时间:90分钟试卷总分:120分题号一二三总分15161718得分第卷(选择题)一、选择题(本大题共10小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是正确的)1下列表格可以作为X的分布列的是()A.X013Pa1aB.X123P1C.X112P2aa22 D.X45P2设服从二项分布XB(n,p)的随机变量X的均值与方差分别是15和,则n,p的值分别是()A50,B60,C50,D60,3若随机变量X服从正态分布,其正态曲线上的最高点的坐标是,则该随机变量的方差等于()A10 B100 C. D.4甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率
2、分别为0.4,0.5,则恰有一人击中敌机的概率为()A0.9 B0.2 C0.7 D0.55某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,那么P(B|A)等于()A. B. C. D.6如图,用K,A1,A2三类不同的元件连接成一个系统当K正常工作且A1,A2至少有一个正常工作时,系统正常工作已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为()A0.960 B0.864 C0.720 D0.5767设随机变量X服从正态分布N(0,1),且P(X1)p,则P(1X0)等于()A.p B1p C12p D.p8将
3、1枚硬币连掷5次,如果出现k次正面向上的概率等于出现k1次正面向上的概率,则k的值为()A0B1C2D39船队若出海后天气好,可获利5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元根据预测知天气好的概率为0.6,则出海效益的均值是()A2 000元 B2 200元 C2 400元 D2 600元10(浙江高考)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m3,n3),从乙盒中随机抽取i(i1,2)个球放入甲盒中(1)放入i个球后,甲盒中含有红球的个数记为i(i1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i1,2)则()Ap1p
4、2,E(1)E(2) Bp1E(2)Cp1p2,E(1)E(2) Dp1p2,E(1)p2,E(1)E(2),故选A.11解析:因为通过各科考试的概率为p,所以不能通过考试的概率为1p,易知XB(6,1p),所以EX6(1p)2.解得p.答案:12解析:正态总体的数据落在这两个区间里的概率相等,说明在这两个区间上位于正态曲线下方的面积相等另外,因为区间(3,1)和区间(3,5)的长度相等,说明正态曲线在这两个区间上是对称的区间(3,1)和区间(3,5)关于直线x1对称,正态分布的数学期望就是1.答案:113解析:随机变量X服从超几何分布,其中N7,M2,n2,则EX2.答案:14解析:设X表示
5、向上的数之积,则P(X1),P(X2)C,P(X4),P(X0).EX124.答案:15解:(1)由概率分布的性质有0.10.32aa1,解得a0.2.X的概率分布为: X0123P0.10.30.40.2EX00.110.320.430.21.7.(2)设事件A表示“两个月内共被投诉2次”;事件A1表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件A2表示“两个月内每个月均被投诉1次”则由事件的独立性,得P(A1)CP(X2)P(X0)20.40.10.08,P(A2)P(X1)20.320.09,P(A)P(A1)P(A2)0.080.090.17.故该企业在这两个月内共被消费
6、者投诉2次的概率为0.17.16解:设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气重度污染”,则BA5A8.所以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所以X的分布列为X012P故X的数学期望EX012.(3)从3月5日开始连续三天的空气质量指数方差最大17解:(1
7、)X的所有可能取值为0,1,2,依题意得P(X0),P(X1),P(X2).X的分布列为X012P(2)设“甲、乙都不被选中”为事件C,则P(C);所求概率为P()1P(C)1.(3)P(B);P(AB),P(A),即P(B|A).18解:(1)当X100,130)时,T500X300(130X)800X39 000,当X130,150时,T50013065 000.所以T(2)由(1)知利润T不少于57 000元,当且仅当120X150.由直方图知需求量X120,150的频率为0.7,所以下一个销售季度内的利润T不少于57 000元概率的估计值为0.7.(3)依题意可得T的分布列为T45 00053 00061 00065 000P0.10.20.30.4所以ET45 0000.153 0000.261 0000.365 0000.459 400.