ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:62.50KB ,
资源ID:7229      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-7229-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.1《算法与程序框图--算法的概念》教案(新人教必修3).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

1.1《算法与程序框图--算法的概念》教案(新人教必修3).doc

1、教案1.1.1 算法的概念【教材的地位和作用分析】 算法是一个全新的课题,已经成为计算科学的重要基础,它在科学技术和社会发展中起着越来越重要的作用.算法的思想和初步知识,也正在普通公民的常识. 算法思想将贯穿高中数学课程的相关部分.【教学重点】通过实例体会算法思想,初步理解算法的含义.【教学重点】算法概念的理解和对算法的描述.【教学过程】一.引入:引例1:解二元一次方程组: 分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解:第一步: - 2,得: 5y=3; 第二步:解得 ; 第三步:将代入,得 .评注:1.以上求解的步骤就

2、是解二元一次方程组的算法. 2.本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法.引例2:写出求方程组的解的算法.(可以让学生上台演板)解:第一步:a1 - a2,得: 第二步:解得 ; 第三步:将代入,得.二.概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.说明:1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能

3、有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限是、事先设计好的步骤加以解决.三.例题讲评:例1.任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.分析:(1)质数是只能被1和自身整除的大于1的整数.(2)要判断一个大于

4、1的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.解:算法:第一步:判断n是否等于2.若n=2,则n是质数;若n2,则执行第二步.第二步:依次从2(n-1)检验是不是n的因数,即整除n的数.若有这样的数,则n不是质数;若没有这样的数,则n是质数.说明:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:(1)写出的算法必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确,且计算机能够执行.例2.用二分法设计一个求方程的近似根的算法.分析:该算法实质是求的近似值的

5、一个最基本的方法.解:设所求近似根与精确解的差的绝对值不超过0.005,算法:第一步:令.因为,所以设x1=1,x2=2.第二步:令,判断f(m)是否为0.若是,则m为所求;若否,则继续判断大于0还是小于0.第三步:若,则x1=m;否则,令x2=m.第四步:判断是否成立?若是,则x1、x2之间的任意值均为满足条件的近似根;若否,则返回第二步.说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.四.练习:让学生举出一些算法的例子,老师再选出一个简单的具有代表性的例子.如:写出解方程的一

6、个算法.分析:本题是求一元二次方程的解的问题,方法很多,下面分别用配方法、判别式法写出这个问题的两个算法.解:算法1:第一步:移项,得:; 第二步:式两边同加1并配方,得: 第三步:式两边开方得: x-1=2 第四步:解得: x=3或x=-1.算法2:第一步:计算方程的判别式并判断其符号: D=22+43=160;第二步:将a=1,b=-2,c=-3代入求根公式.得: x1=3,x2=-1.说明:给出此题的目的是使学生加深对算法概念的理解. (老师辅导学生完成)五.小结:算法的概念及其特点.六.作业: (课本第四页练习)1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:算法步骤:第一步:输入任意一个正实数r;第二步:计算以r为半径的圆的面积:;第三步:输出圆的面积S.2.任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.解:算法步骤:第一步:依次以2(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,则不是n的因数;第二步:在n的因数中加入1和n;第三步:输出n的所有因数.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3