1、高考资源网() 您身边的高考专家课时作业(五十九)一、选择题1已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是()A合格产品少于9件B合格产品多于9件C合格产品正好是9件D合格产品可能是9件解析:因为产品的合格率为90%,抽出10件产品,则合格产品可能是1090%9件,这是随机的答案:D2从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A至少有1个白球,都是白球B至少有1个白球,至少有1个红球C恰有1个白球,恰有2个白球D至少有1个白球,都是红球解析:A,B中的两个事件不互斥,当然也不对立,C的两个事件互斥而不对立,D的两个事件不但互斥而且对立,
2、所以本题正确答案应为C.答案:C3在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为()A0.20B0.60 C0.80D0.12解析:令“能上车”记为事件A,则3路或6路车有一辆路过即事件发生,故P(A)0.200.600.80.答案:C4从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在30,40克的概率为0.5,那么重量不小于30克的概率为()A0.3B0.5
3、 C0.8D0.7解析:由互斥事件概率加法公式知:重量在(40,)的概率为10.30.50.2,又0.50.20.7,重量不小于30克的概率为0.7.答案:D5在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件解析:由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与
4、其余两个事件的和事件也是对立事件故选D.答案:D6甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是()A甲获胜的概率是B甲不输的概率是C乙输了的概率是D乙不输的概率是解析:“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率是P1;设事件A为“甲不输”,则A是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A)(或设事件A为“甲不输”看作是“乙胜”的对立事件,所以P(A)1)答案:A二、填空题7若A、B为互斥事件,P(A)0.4,P(AB)0.7,则P(B)_.解析:A、B为互斥事件,P(AB)P(A)P(B),P(B)P(AB)P(A)0.70.40.3.答案:0.3
5、8一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为_;至少取得一个红球的概率为_解析:(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P.(2)由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为P(A)1P(B)1.答案:9抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x,y,则为整数的概率是_解析:将抛掷甲、乙两枚质
6、地均匀的正四面体所得的数字x,y记作有序实数对(x,y),共包含16个基本事件,其中为整数的有:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求概率为.答案:三、解答题10甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢(1)若以A表示和为6的事件,求P(A)(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?说明理由解:(1)甲、乙各出1到5根手指头,共有5525种可能结果,和为6有5种可能结果P(A)(2)
7、B与C不是互斥事件,理由如下:B与C都包含“甲赢一次,乙赢二次”,事件B与事件C可能同时发生,故不是互斥事件(3)和为偶数有13种可能结果,其概率为P,故这种游戏规则不公平11袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各是多少?解:分别记得到红球、黑球、黄球、绿球为事件A、B、C、D.由于A、B、C、D为互斥事件,根据已知得到解得得到黑球、黄球、绿球的概率分别为,.12某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机
8、去开会的概率;(2)求他不乘轮船去开会的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?解:(1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的故P(A1A4)P(A1)P(A4)0.30.40.7.(2)设他不乘轮船去开会的概率为P,则P1P(A2)10.20.8.(3)由于0.30.20.5,0.10.40.5,1(0.30.2)0.5,1(0.10.4)0.5,故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会热点预测13一个袋中装有大小相同的黑球、白球和红球已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:(1)从中任意摸出2个球,得到的都是黑球的概率;(2)袋中白球的个数解:(1)由题意知,袋中黑球的个数为104.记“从袋中任意摸出2个球,得到的都是黑球”为事件A,则P(A).(2)记“从袋中任意摸出2个球,至少得到1个白球”为事件B,设袋中白球的个数为x,则P(B)1P()1,解得x5.即袋中白球的个数为5个- 6 - 版权所有高考资源网