ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:703KB ,
资源ID:720636      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-720636-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》安徽省蚌埠市2015届高考数学三模试卷(理科) WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》安徽省蚌埠市2015届高考数学三模试卷(理科) WORD版含解析.doc

1、高考资源网() 您身边的高考专家2015年安徽省蚌埠市高考数学三模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的A、B、C、D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卷相应位置.1已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为()AMNB(UM)NCM(UN)D(UM)(UN)2复数z=(其中i是虚数单位),则z的共轭复数=()AiBiC +iD +i3双曲线=1(mZ)的离心率为()AB2CD34已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数

2、列,则p是q的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=()A16B16C8D86执行如图所示的程序框图,则输出结果S=()A15B25C50D1007如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于()A12+B12+23C12+24D12+8将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则

3、的值不可能是()ABCD9若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为()A2tB2tC2tD2t10如图,四面体DABC的体积为,且满足ACB=60,BC=1,AD+=2,则四面体DABC中最长棱的长度为()AB2CD3二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卷相应横线上.11在(x2)9的二项展开式中,常数项的值为12在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是13某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但

4、不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)14已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=15已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号),1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0

5、必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同三、解答题:本大题共6小题,共75分.解答须写出说明、证明过程和演算步骤.16在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C17从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试()若选出的4名同学是同一性别,求全为女生的概率;()若设选出男生的人数为X,求X的分布列和EX18设定义在(0,+)上的函数f(x)=,g(x)=,其中nN*()求函数f(x)的

6、最大值及函数g(x)的单调区间;()若存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值(参考数据:ln41.386,ln51.609)19如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点()证明:AG平面ABCD;()若直线BF与平面ACE所成角的正弦值为,求AG的长20已知数列an共有2k(k2,kZ)项,a1=1,前n项和为Sn,前n项乘积为Tn,且an+1=(a1)Sn+2(n=1,2,2k1),其中a=2,数列bn满足bn=log2,()求

7、数列bn的通项公式;()若|b1|+|b2|+|b2k1|+|b2k|,求k的值21设A(x0,y0)(x0,y00)是椭圆T: +y2=1(m0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,DE是椭圆T上不同于A的另外一点,且AEAC,如图所示() 若点A横坐标为,且BDAE,求m的值;()求证:直线BD与CE的交点Q总在椭圆+y2=()2上2015年安徽省蚌埠市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的A、B、C、D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卷相应位置.1已知全集U=0

8、,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为()AMNB(UM)NCM(UN)D(UM)(UN)【考点】交、并、补集的混合运算【专题】集合【分析】根据补集、交集的概念进行解答即可【解答】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题2复数z=(其中i是虚数单位),则z的共轭复数=()AiBiC +iD +i【考点】复数代数形式的乘除运算【专题】数系的扩充和复数【分析】直接由复数代数形式的乘除运算化简复数z,则z的共轭复数可求【解答】解:z=,=故选:

9、C【点评】本题考查了复数代数形式的乘除运算,是基础题3双曲线=1(mZ)的离心率为()AB2CD3【考点】双曲线的简单性质【专题】计算题;圆锥曲线的定义、性质与方程【分析】由双曲线方程求出三参数a,b,c,再根据离心率e=求出离心率【解答】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b24已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的()

10、A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断【专题】简易逻辑【分析】先根据命题的否定,得到p和q,再根据充分条件和必要的条件的定义判断即可【解答】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的

11、定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立5已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=()A16B16C8D8【考点】函数奇偶性的性质【专题】计算题;函数的性质及应用【分析】直接利用奇、偶函数的性质列出方程,然后求解即可【解答】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力6执行如图所示的程序框图,则

12、输出结果S=()A15B25C50D100【考点】程序框图【专题】算法和程序框图【分析】模拟执行程序框图,依次写出每次循环得到的S的值,当不满足i50时,退出循环,输出S=(1+3)+(5+7)+(97+99)=50【解答】解:根据程序框图,S=(1+3)+(5+7)+(97+99)=50,输出的S为50故选:C【点评】本题主要考查了循环结构的程序框图,模拟执行程序框图,正确得到程序框图的功能是解题的关键,属于基础题7如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于()A12+B12+23C12+24D12+【考点】由三

13、视图求面积、体积【专题】计算题;空间位置关系与距离【分析】根据几何体的三视图,得出该几何体是一半圆台中间被挖掉一半圆柱,结合图中数据求出它的表面积【解答】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目8将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是()ABCD【考点】函数y=Asin(x+)的图象

14、变换【分析】由f(x)的图象经过点P(0,),且,可得=,又由g(x)的图象也经过点P(0,),可求出满足条件的的值【解答】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档9若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为()A2tB2tC2tD2t【考

15、点】简单线性规划【专题】转化思想;不等式的解法及应用【分析】作出不等式组对应的平面区域,求出(t+1)x+(t+2)y+t=0过定点,结合图象建立条件关系即可得到结论【解答】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较

16、强,属于中档题10如图,四面体DABC的体积为,且满足ACB=60,BC=1,AD+=2,则四面体DABC中最长棱的长度为()AB2CD3【考点】基本不等式在最值问题中的应用【专题】不等式的解法及应用;空间位置关系与距离【分析】由锥体的体积公式可得AD1,再由基本不等式可得AD=1时,等号成立,可得AD面ABC,求得最长的棱为2【解答】解:因为AD(BCACsin60)VDABC=,BC=1,即AD1,因为2=AD+2=2,当且仅当AD=1时,等号成立,这时AC=,AD=1,且AD面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2故选B【点评】本题考查四面体中最长的棱长,考查棱锥的体积

17、公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卷相应横线上.11在(x2)9的二项展开式中,常数项的值为84【考点】二项式定理的应用【专题】二项式定理【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项【解答】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题12在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(

18、3,),则O点到直线AB的距离是【考点】简单曲线的极坐标方程【专题】转化思想;综合法;坐标系和参数方程【分析】把点的极坐标化为直角坐标的方法,可得直线AB的方程,再利用点到直线的距离公式求得O点到直线AB的距离【解答】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题13某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻

19、),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有24种(用数字作答)【考点】计数原理的应用【专题】应用题;排列组合【分析】由题意,B与C必须相邻,利用捆绑法,结合A必须在D的前面完成,可得结论【解答】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础14已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则

20、+=【考点】平面向量数量积的运算【专题】平面向量及应用【分析】由点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,可得=, =, =,利用“裂项求和”即可得出【解答】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题15已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号)

21、,1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同【考点】命题的真假判断与应用;函数的值【专题】函数的性质及应用;简易逻辑【分析】利用新定义直接判断的正误;通过求解方程的解,判断不满足新定义;通过分类讨论判断满足新定义【解答】解:对于,令g(x)=x,可得x=或x=1,故正确;对于,因为f(x0)=x0,所以f(f(x0)=f(x0)=x0,即f(f(x0)

22、=x0,故x0也是函数y=f(x)的稳定点,故正确;对于,g(x)=2x21,令2(2x21)21=x,因为不动点必为稳定点,所以该方程一定有两解x=,1,由此因式分解,可得(x1)(2x+1)(4x2+2x1)=0还有另外两解,故函数g(x)的稳定点有,1,其中是稳定点,但不是不动点,故错误;对于,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0)=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;

23、假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力三、解答题:本大题共6小题,共75分.解答须写出说明、证明过程和演算步骤.16在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C【考点】正弦定理;余弦定理【专题】解三角形【分析】()根据商的关系、两角和的正弦公式、内角和定理化简已知的式子,再由正弦定理化简即可求出的值;()根据题意和三角形的面积公

24、式、余弦定理列出方程,化简后利用辅助角公式化简,由内角的范围、特殊角的正弦值求出角C的值【解答】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定理得, =,由得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0C,则C+,即C+=,解得C= 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中

25、档题17从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试()若选出的4名同学是同一性别,求全为女生的概率;()若设选出男生的人数为X,求X的分布列和EX【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列【专题】应用题;概率与统计【分析】()若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况,即可求全为女生的概率;()X可能的取值为0,1,2,3,4,利用古典概型的概率加法公式可求X取相应值时的概率,从而可得分布列,利用数学期望公式可求得期望值,【解答】解:()若4人全是女生,共有C74=35种情况;若4人全是男生,共有

26、C84=70种情况;故全为女生的概率为=()共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=;P(X=4)=故X的分布列为X01234PEX=0+1+2+3+4=【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础18设定义在(0,+)上的函数f(x)=,g(x)=,其中nN*()求函数f(x)的最大值及函数g(x)的单调区间;()若存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值(参考数据:ln4

27、1.386,ln51.609)【考点】利用导数研究函数的单调性【专题】导数的综合应用【分析】()先判断函数f(x)在区间(0,+)上不是单调函数再求导,由导数的正负判断函数的单调性;()尝试n的值,使y=f(x)的最大值小于y=g(x)的最小值即可,即可得到结论【解答】解:()函数f(x)在区间(0,+)上不是单调函数证明如下,令 f(x)=0,解得当x变化时,f(x)与f(x)的变化如下表所示:xf(x)+0f(x)所以函数f(x)在区间上为单调递增,区间上为单调递减所以函数f(x)在区间(0,+)上的最大值为f()=g(x)=,令g(x)=0,解得x=n当x变化时,g(x)与g(x)的变化

28、如下表所示:x(0,n)n(n,+)g(x)0+g(x)所以g(x)在(0,n)上单调递减,在(n,+)上单调递增()由()知g(x)的最小值为g(n)=,存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,即en+1nn1,即n+1(n1)lnn,当n=1时,成立,当n2时,lnn,即0,设h(n)=,n2,则h(n)是减函数,继续验证,当n=2时,3ln20,当n=3时,2ln30,当n=4时, ,当n=5时,ln51.60,则n的最大值是4【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题19如图,在五面体ABCDEF中

29、,四边形ABCD是边长为4的正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点()证明:AG平面ABCD;()若直线BF与平面ACE所成角的正弦值为,求AG的长【考点】直线与平面所成的角;直线与平面垂直的判定【专题】证明题;转化思想;综合法;空间位置关系与距离;空间角【分析】()分别推导出AGEF,AGAD,由此能证明AG平面ABCD()以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,建立空间直角坐标系,由BF与平面ACE所成角的正弦值为,利用向量法能求出AG【解答】(本小题满分12分)()证明:因为AE=AF,点G是EF的中点,所以AGEF又因为E

30、FAD,所以AGAD因为平面ADEF平面ABCD,平面ADEF平面ABCD=AD,AG平面ADEF,所以AG平面ABCD()解:因为AG平面ABCD,ABAD,所以AG、AD、AB两两垂直以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t0),则E(0,1,t),F(0,1,t),所以=(4,1,t),=(4,4,0),=(0,1,t)设平面ACE的法向量为=(x,y,z),由=0, =0,得,令z=1,得=(t,t,1)因为BF与平面ACE所成角的正弦值为,所以|cos|=,即=,解得t2=1或所

31、以AG=1或AG=【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用20已知数列an共有2k(k2,kZ)项,a1=1,前n项和为Sn,前n项乘积为Tn,且an+1=(a1)Sn+2(n=1,2,2k1),其中a=2,数列bn满足bn=log2,()求数列bn的通项公式;()若|b1|+|b2|+|b2k1|+|b2k|,求k的值【考点】数列的求和【专题】等差数列与等比数列【分析】(1)由已知条件推导出an+1an=(a1)an,从而,由此能求出数列bn的通项公式(2)令,当nk时,当nk+1时,由此能求出k的值【解答】(本小题满分13

32、分)解:(1)当n=1时,a2=2a,则;当2n2k1时,an+1=(a1)Sn+2,an=(a1)Sn1+2,所以an+1an=(a1)an,故=a,即数列an是等比数列,Tn=a1a2an=2na1+2+(n1)=,bn=(2)令,则nk+,又nN*,故当nk时,当nk+1时,|b1|+|b2|+|b2k1|+|b2k|=+()+()=(k+1+b2k)(b1+bk)=+k=,由,得2k26k+30,解得,又k2,且kN*,所以k=2【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用21设A(x0,y0)(x0

33、,y00)是椭圆T: +y2=1(m0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,DE是椭圆T上不同于A的另外一点,且AEAC,如图所示() 若点A横坐标为,且BDAE,求m的值;()求证:直线BD与CE的交点Q总在椭圆+y2=()2上【考点】椭圆的简单性质【专题】圆锥曲线的定义、性质与方程【分析】()由对称性结合A的横坐标可得A的纵坐标,代入椭圆方程可求m的值;()设E(x1,y1),由于A,E均在椭圆T上,则,联立可得BD所在直线方程,再由kAEkAC=1求出CE所在直线方程,联立两直线方程把Q的坐标用A的坐标表示,代入椭圆方程证得答案【解答】()解:BDAE,AEAC,BDAC,可知A(),故,m=2;()证明:由对称性可知B(x0,y0),C(x0,y0),D(x0,y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由得:(x1+x0)(x1x0)+(m+1)(y1+y0)(y1y0)=0,显然x1x0,从而=,AEAC,kAEkAC=1,解得,代入椭圆方程,知【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3