ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:130.50KB ,
资源ID:71755      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-71755-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新方案》2015高考数学(文)一轮演练知能检测:第8章 第6节双曲线.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新方案》2015高考数学(文)一轮演练知能检测:第8章 第6节双曲线.doc

1、第六节双 曲 线 全盘巩固1已知双曲线C:1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.1 B.1C.1 D.1解析:选A因为双曲线的焦距为10,所以c5.又因为P(2,1)在渐近线上,且渐近线方程为yx,所以1,即a2b.又因为c2a2b25b225,所以b25,a220.即双曲线方程为1.2(2013福建高考)双曲线x2y21的顶点到其渐近线的距离等于()A. B. C1 D.解析:选B双曲线x2y21的顶点为(1,0),(1,0),渐近线方程为xy0和xy0,由对称性不妨求点(1,0)到直线xy0的距离,其距离为.3已知双曲线1的右焦点为(3,0),则该双曲线的离心率

2、等于()A. B. C. D.解析:选C因为双曲线1的右焦点为(3,0),所以c3,又b25,所以a2c2b2954.即a2.所以双曲线的离心率e.4(2014惠州模拟)已知双曲线1与直线y2x有交点,则双曲线离心率的取值范围为()A(1,) B(1,C(,) D,)解析:选C双曲线的一条渐近线方程为yx,则由题意得2.e .5已知双曲线1(b0)的左,右焦点分别是F1,F2,其一条渐近线方程为yx,点P(,y0)在双曲线上则()A 12 B2 C0 D4解析:选C由渐近线方程为yx知双曲线是等轴双曲线,不妨设双曲线方程是x2y22,于是F1,F2坐标分别是(2,0)和(2,0),且P(,1)

3、或P(,1)由双曲线的对称性,不妨取P(,1),则(2,1),(2,1)所以(2,1)(2,1)(2)(2)10.6(2014杭州模拟)设F1,F2分别是双曲线C:1(a0,b0)的左、右焦点,以F1F2为直径的圆与双曲线C在第二象限的交点为P,若双曲线C的离心率为5,则cosPF2F1()A.B.C.D.解析:选C据题意可知PF1PF2,设|PF1|n,|PF2|m,又由双曲线定义知mn2a;由勾股定理得m2n24c2;又由离心率e5,三式联立解得m8a,故cosPF2F1.7(2013江苏高考)双曲线1的两条渐近线的方程为_解析:因为双曲线1的两条渐近线方程为0,化简得yx.答案:yx8(

4、2013陕西高考)双曲线1的离心率为,则m等于_解析:依题意知m0,则e211,解得m9.答案:99(2014丽水模拟)已知双曲线x2y21,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1PF2,则|PF1|PF2|的值为_解析:不妨设点P在双曲线的右支上且F1,F2分别为左、右焦点,因为PF1PF2,所以(2)2|PF1|2|PF2|2,又因为|PF1|PF2|2,所以(|PF1|PF2|)24,可得2|PF1|PF2|4,则(|PF1|PF2|)2|PF1|2|PF2|22|PF1|PF2|12,所以|PF1|PF2|2.答案:210已知双曲线的中心在原点,焦点F1,F2在坐标轴上

5、,离心率为,且过点(4,)(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:0;(3)求F1MF2的面积解:(1)e,可设双曲线方程为x2y2(0)过点P(4,),1610,即6.双曲线方程为x2y26.(2)证明:由(1)可知,双曲线中ab,c2,F1(2,0),F2(2,0),kMF1,kMF2,kMF1kMF2.点M(3,m)在双曲线上,9m26,m23.故kMF1kMF21,MF1MF2.0.(3)F1MF2的底|F1F2|4,F1MF2的边F1F2上的高h|m|,SF1MF2|F1F2|m|6.11(2014湛江模拟)已知双曲线1(a0,b0)的右焦点为F(c,0)(1)

6、若双曲线的一条渐近线方程为yx且c2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为,求双曲线的离心率解:(1)双曲线的渐近线为yx,ab,c2a2b22a24,a2b22,双曲线方程为1.(2)设点A的坐标为(x0,y0),直线AO的斜率满足()1,x0y0,依题意,圆的方程为x2y2c2,将代入圆的方程得3yyc2,即y0c,x0c,点A的坐标为,代入双曲线方程得1,即b2c2a2c2a2b2,又a2b2c2,将b2c2a2代入式,整理得c42a2c2a40,348240,(3e22)(e22)0,e1,e,双曲线的离心率为.1

7、2设双曲线1的两个焦点分别为F1,F2,离心率为2.(1)求此双曲线的渐近线l1,l2的方程;(2)若A,B分别为l1,l2上的点,且2|AB|5|F1F2|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线解:(1)e2,c24a2.c2a23,a1,c2.双曲线方程为y21,渐近线方程为yx.(2)设A(x1,y1),B(x2,y2),AB的中点M(x,y)2|AB|5|F1F2|,|AB|F1F2|2c10.10.又y1x1,y2x2,2xx1x2,2yy1y2,y1y2(x1x2),y1y2(x1x2), 10,3(2y)2(2x)2100,即1.则M的轨迹是中心在原点,焦点在x轴上

8、,长轴长为10,短轴长为的椭圆冲击名校1已知P是双曲线1(a0,b0)上的点,F1,F2是其焦点,双曲线的离心率是,且0,若PF1F2的面积为9,则ab的值为()A5 B6 C7 D8解析:选C由0,得,设|m,|n,不妨设mn,则m2n24c2,mn2a,mn9,解得b3,ab7.2过双曲线1(a0,b0)的右顶点A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若A,B,C三点的横坐标成等比数列,则双曲线的离心率为()A. B. C. D.解析:选C由题知A点坐标为(a,0),过A且斜率为1的直线方程为yxa,由得C,由得B.A,B,C三点横坐标成等比数列,即b3a,e .

9、高频滚动已知直线xky30所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.(1)求椭圆C的标准方程;(2)已知圆O:x2y21,直线l:mxny1,试证:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围解:(1)直线xky30经过定点F(3,0),即点F(3,0)是椭圆C的一个焦点设椭圆C的方程为1(ab0),因为椭圆C上的点到点F的最大距离为8,所以a38,即a5.所以b2523216.所以椭圆C的方程为1.(2)因为点P(m,n)在椭圆C上,所以1,即n216(0m225)所以原点到直线l:mxny1的距离d1.所以直线l:mxny1与圆O:x2y21恒相交L24(r2d2)4.因为0m225,所以L.即直线l被圆O所截得的弦长L的取值范围为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3