ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:365.68KB ,
资源ID:717463      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-717463-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用)专题01 单调性的几个等价命题 WORD版含解析.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用)专题01 单调性的几个等价命题 WORD版含解析.docx

1、专题01 单调性的几个等价命题【方法点拨】1. 函数f(x)为定义域在上的增函数对任意,当时,都有;2. 对任意,当时,都有函数f(x)kx为上的增函数说明:含有地位同等的两个变量x1 , x 2 或𝑞,𝑟等不等式,进行“尘归尘,土归土”式的整理,是一种常见变形,如果整理(即同构)后不等式两边具有结构的一致性,往往暗示单调性(需要预先设定两个变量的大小).【典型题示例】例1 (2021江苏镇江八校12联考)已知函数f(x)的定义域为R,图象恒过(0,1)点,对任意,当时,都有,则不等式)的解集为( )A.(In2, +)B.(-,ln2)C.(In 2,1)D.

2、(0, ln 2)【答案】D【分析】移项通分,按结构相同、同一变量分成一组的原则,将化为令,故在R上单增,且可化为即,所以,解之得所以不等式)的解集为(0, ln 2).点评:1. f(x)在单增(减)对任意,当时,都有 ;2. 结构联想,当题目中出现,应移项通分转化为,即F(x)=f(x)ax在单增.例2 (2021江苏南通如皋一抽测22改编)已知函数,对于任意,当时,不等式 恒成立,则实数的取值范围是_.【答案】【分析】同构后不等式两边具有结构的一致性,构造新函数,直接转化为函数的单调性.【解析】不等式可变形为,即,当,且恒成立,所以函数在上单调递减.令则在上恒成立,即在上恒成立. 设,则

3、.因为当时,所以函数在上单调递减,所以,所以,即实数的取值范围为.例3 (2021江苏南通如皋期末12)已知是定义在上的奇函数,对任意两个不相等的正数,都有,记,则,的大小关系为A.B.C.D.【答案】D【解析】构造函数,则因为是定义在上的奇函数,故为定义域是 的偶函数又对任意两个不相等的正数都有,即,故在上为减函数.综上, 为偶函数,且在上单调递增,在上单调递减.又,且所以,即,故答案为:D.【巩固训练】1. 已知函数满足对任意,都有成立,则实数的取值范围是( )A B C D2.已知函数,当时,不等式恒成立,则实数的取值范围为()ABCD3.若对x1,x2(m,),且x1x2,都有1,则m

4、的最小值是()注:(e为自然对数的底数,即e2.718 28)A. Be C1 D.4.(2021江苏扬州中学高三数学开学考试8)已知函数,对任意的,且,不等式恒成立,则实数的取值范围是( )ABCD5. (2021江苏无锡天一12月八省联考热身卷8)已知是定义在上的奇函数,且,当,且时,成立,若对任意的恒成立,则实数m的取值范围是( )A B C D6.设函数是定义在上的奇函数,若对任意两个不相等的正数都有,则不等式的解集为_.7.已知,若对任意两个不等的正实数,都有恒成立,则的取值范围是 【答案与提示】1. 【答案】B【解析】因为函数对任意,都有成立,所以函数在定义域内单调递减,所以.故选

5、B.2. 【答案】A【分析】令,由可知在上单调递增,从而可得在上恒成立;通过分离变量可得,令,利用导数可求得,从而可得,解不等式求得结果.【解析】由且得:令,可知在上单调递增在上恒成立,即:令,则时,单调递减;时,单调递增 ,解得:本题正确选项:点评:本题考查根据函数的单调性求解参数范围的问题,关键是能够将已知关系式变形为符合单调性的形式,从而通过构造函数将问题转化为导数大于等于零恒成立的问题;解决恒成立问题常用的方法为分离变量,将问题转化为参数与函数最值之间的大小关系比较的问题,属于常考题型.3.【答案】C【解析】由题意,当0mx1x2时,由1,等价于x1ln x2x2ln x1x2x1,即

6、x1ln x2x1x2ln x1x2,故x1(ln x21)x2(ln x11),故,令f(x),则f(x2)x1m0,故f(x)在(m,)上单调递减,又由f(x),令f(x)1,故f(x)在(1,)上单调递减,故m1.4. 【答案】B【解析】因为,不妨设,则可化为,即设则恒成立,即对任意的,且时恒成立,即对任意的,且时恒成立所以在R上单增故在R上恒成立所以,故所以实数的取值范围是, 选B5. 【答案】B【解析】令,则,成立,则为单调增函数,若对任意的恒成立,则,即,即都有,令,则,故选B6.【答案】【解析】构造函数,则因为是定义在上的奇函数,故为定义域是 的偶函数,又对任意两个不相等的正数都有,即,故在上为减函数.又,故.综上, 为偶函数,且在上单调递增,在上单调递减.且.故即.根据函数性质解得,故答案为:.7.【答案】,【解析】设,则,令,在上单调递减,时,的取值范围是,故答案为:,

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1