ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:313.58KB ,
资源ID:716784      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-716784-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年高考数学一轮复习 单元质检八 立体几何(B)(含解析)新人教A版(理).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年高考数学一轮复习 单元质检八 立体几何(B)(含解析)新人教A版(理).docx

1、单元质检八立体几何(B)(时间:45分钟满分:100分)一、选择题(本大题共6小题,每小题7分,共42分)1.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案:C解析:由三视图得到空间几何体,如图所示,则PA平面ABCD,平面ABCD为直角梯形,PA=AB=AD=2,BC=1,所以PAAD,PAAB,PABC.又BCAB,ABPA=A,所以BC平面PAB,所以BCPB.在PCD中,PD=22,PC=3,CD=5,所以PCD为锐角三角形.所以侧面中的直角三角形为PAB,PAD,PBC,共3个.2.设l,m,n表示不同的直线,表示不同的平面,给出下列

2、四个命题:若ml,且m,则l;若,m,n,则mn;若,则;若mn,m,n,则.则假命题的个数为()A.4B.3C.2D.1答案:B解析:若ml,且m,则l是正确的,垂直于同一个平面的直线互相平行;若,m,n,则mn是错误的,当m和n平行时,也会满足前面的条件;若,则是错误的,垂直于同一个平面的两个平面可以是相交的;若mn,m,n,则是错误的,平面和可以是任意的夹角.故选B.3.(2020山东,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂

3、直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40,则晷针与点A处的水平面所成的角为()A.20B.40C.50D.90答案:B解析:由题意知,如图,圆O为赤道所在的大圆.圆O1是在点A处与赤道所在平面平行的晷面.O1C为晷针所在的直线.直线OA在圆O所在平面的射影为直线OB,点B在圆O上,则AOB=40,COA=50.又CAO=90,OCA=40.晷针与点A处的水平面所成角为40,故选B.4.如图,已知直平行六面体ABCD-A1B1C1D1的各条棱长均为3,BAD=60,长为2的线段MN的一个端点M在DD1上运动,另一个端点N在底面ABCD上运动,则MN的中点P

4、的轨迹(曲面)与共顶点D的三个面所围成的几何体的体积为()A.29B.49C.23D.43答案:A解析:MN=2,则DP=1,则点P的轨迹为以D为球心,半径r=1的球面的一部分,则球的体积为V=43r3=43.BAD=60,ADC=120,120为360的13,只取半球的13,则V=431312=29.5.九章算术是我国古代的数学名著,书中提到一种名为“刍甍”的五面体,如图,四边形ABCD是矩形,棱EFAB,AB=4,EF=2,ADE和BCF都是边长为2的等边三角形,则这个几何体的体积是()A.203B.83+23C.1023D.823答案:C解析:过E作EG平面ABCD,垂足为G,过F作FH

5、平面ABCD,垂足为H,过G作PQAD,交AB于Q,交CD于P,过H作MNBC,交AB于N,交CD于M,如图所示.四边形ABCD是矩形,棱EFAB,AB=4,EF=2,ADE和BCF都是边长为2的等边三角形,四边形PMNQ是边长为2的正方形,EG=(3)2-12=2,这个几何体的体积V=VE-AQPD+VEPQ-FMN+VF-NBCM=131222+12222=423+22=1023.6.已知正方体ABCD-A1B1C1D1,平面过直线BD,平面AB1C,平面AB1C=m,平面过直线A1C1,平面AB1C,平面ADD1A1=n,则m,n所成角的余弦值为()A.0B.12C.22D.32答案:D

6、解析:如图所示,BD1平面AB1C,平面过直线BD,平面AB1C,平面即为平面DBB1D1.设ACBD=O.平面AB1C=OB1=m.平面A1C1D过直线A1C1,与平面AB1C平行,而平面过直线A1C1,平面AB1C,平面A1C1D即为平面.平面ADD1A1=A1D=n,又A1DB1C,m,n所成角为OB1C,由AB1C为正三角形,则cosOB1C=cos6=32.故选D.二、填空题(本大题共2小题,每小题7分,共14分)7.如图,已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M,则四棱锥M-EFGH的体积为.答案:112解析:

7、由题意可知,四棱锥M-EFGH的底面EFGH为正方形且边长为22,其高为12,所以V四棱锥M-EFGH=1322212=112.8.已知球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则三棱锥S-ABC的体积的最大值为.答案:33解析:记球O的半径为R,由ABC是边长为2的正三角形,且O,A,B,C四点共面,易求R=23.作SDAB于D,连接OD,OS,易知SD平面ABC,注意到SD=SO2-OD2=R2-OD2,因此要使SD最大,则需OD最小,而OD的最小值为1223=33,因此高SD的最大值为232-332=1.因为三棱锥S-

8、ABC的体积为13SABCSD=133422SD=33SD,所以三棱锥S-ABC的体积的最大值为331=33.三、解答题(本大题共3小题,共44分)9.(14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB平面AEC;(2)设二面角D-AE-C为60,AP=1,AD=3,求三棱锥E-ACD的体积.答案:(1)证明如图,连接BD交AC于点O,连接EO.因为底面ABCD为矩形,所以O为BD的中点.又因为E为PD的中点,所以EOPB.因为EO平面AEC,PB平面AEC,所以PB平面AEC.(2)解因为PA平面ABCD,底面ABCD为矩形,所以A

9、B,AD,AP两两垂直.如图,以A为坐标原点,分别以AB,AD,AP的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Axyz,则P(0,0,1),D(0,3,0),E0,32,12,AE=0,32,12.设B(m,0,0)(m0),则C(m,3,0),AC=(m,3,0).设n1=(x,y,z)为平面ACE的法向量,则n1AC=0,n1AE=0,即mx+3y=0,32y+12z=0,可取n1=3m,-1,3.由题意得n2=(1,0,0)为平面DAE的一个法向量.由题设|cos|=12,即33+4m2=12,解得m=32.因为E为PD的中点,所以三棱锥E-ACD的高为12.三棱锥E-ACD的体

10、积V=131233212=38.10.(15分)如图,在四棱锥P-ABCD中,平面PAD平面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD=5.(1)求证:PD平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM平面PCD?若存在,求AMAP的值;若不存在,说明理由.答案:(1)证明因为平面PAD平面ABCD,ABAD,所以AB平面PAD.所以ABPD.又因为PAPD,所以PD平面PAB.(2)解如图,取AD的中点O,连接PO,CO.因为PA=PD,所以POAD.又因为PO平面PAD,平面PAD平面ABCD,所以PO平面ABC

11、D.因为CO平面ABCD,所以POCO.因为AC=CD,所以COAD.如图,建立空间直角坐标系O-xyz.由题意,得A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的法向量为n=(x,y,z),则nPD=0,nPC=0,即-y-z=0,2x-z=0.令z=2,则x=1,y=-2.所以n=(1,-2,2).因为PB=(1,1,-1),所以cos=nPB|n|PB|=-33.所以直线PB与平面PCD所成角的正弦值为33.(3)解设M是棱PA上一点,则存在0,1使得AM=AP.因此点M(0,1-,),BM=(-1,-,).因为BM平面PCD,所

12、以BM平面PCD当且仅当BMn=0,即(-1,-,)(1,-2,2)=0.解得=14.所以在棱PA上存在点M使得BM平面PCD,此时AMAP=14.11.(15分)如图,ADBC,且AD=2BC,ADCD,EGAD,且EG=AD,CDFG,且CD=2FG,DG平面ABCD,DA=DC=DG=2.(1)若M为CF的中点,N为EG的中点,求证:MN平面CDE;(2)求二面角E-BC-F的正弦值;(3)若点P在线段DG上,且直线BP与平面ADGE所成的角为60,求线段DP的长.解:依题意,以D为原点,分别以DA,DC,DG的方向为x轴、y轴、z轴的正方向,建立空间直角坐标系(如图),可得D(0,0,

13、0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M0,32,1,N(1,0,2).(1)证明:依题意DC=(0,2,0),DE=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则n0DC=0,n0DE=0,即2y=0,2x+2z=0,不妨令z=-1,可得n0=(1,0,-1).又MN=1,-32,1,可得MNn0=0.又因为直线MN平面CDE,所以MN平面CDE.(2)依题意,可得BC=(-1,0,0),BE=(1,-2,2),CF=(0,-1,2).设n=(x,y,z)为平面BCE的法向量,则nBC=0,nBE=0

14、,即-x=0,x-2y+2z=0,不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则mBC=0,mCF=0,即-x=0,-y+2z=0,不妨令z=1,可得m=(0,2,1).因此有cos=mn|m|n|=31010,于是sin=1010.所以,二面角E-BC-F的正弦值为1010.(3)设线段DP的长为h(h0,2),则点P的坐标为(0,0,h),可得BP=(-1,-2,h).易知,DC=(0,2,0)为平面ADGE的一个法向量,故|cos|=|BPDC|BP|DC|=2h2+5.由题意,可得2h2+5=sin60=32,解得h=330,2.所以,线段DP的长为33.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1