ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:419.50KB ,
资源ID:714851      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-714851-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017-2018学年高中数学三维设计人教A版浙江专版选修2-2讲义:第三章 3-2 3.2-2 复数代数形式的乘除运算 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017-2018学年高中数学三维设计人教A版浙江专版选修2-2讲义:第三章 3-2 3.2-2 复数代数形式的乘除运算 .doc

1、32.2复数代数形式的乘除运算预习课本P109111,思考并完成下列问题(1)复数乘法、除法的运算法则是什么?共轭复数概念的定义是什么?(2)复数乘法的多项式运算与实数的多项式运算法则是否相同?如何应用共轭复数的性质解决问题?1复数代数形式的乘法法则设z1abi,z2cdi(a,b,c,dR),则z1z2(abi)(cdi)(acbd)(adbc)i.2复数乘法的运算律对任意复数z1,z2,z3C,有交换律z1z2z2z1结合律(z1z2)z3z1(z2z3)分配律z1(z2z3)z1z2z1z33.共轭复数已知z1abi,z2cdi,a,b,c,dR,则(1)z1,z2互为共轭复数的充要条件

2、是ac且bd.(2)z1,z2互为共轭虚数的充要条件是ac且bd0.4复数代数形式的除法法则:(abi)(cdi)i(cdi0)点睛在进行复数除法时,分子、分母同乘以分母的共轭复数cdi,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似1判断(正确的打“”,错误的打“”)(1)两个复数互为共轭复数是它们的模相等的必要条件()(2)若z1,z2C,且zz0,则z1z20.()(3)两个共轭虚数的差为纯虚数()答案:(1)(2)(3)2(北京高考)复数i(2i)()A12iB12iC12i D12i答案:A3若复数z11i,z23i,则z1z2()A42i B2i

3、C22i D34i答案:A4复数_.答案:i复数代数形式的乘法运算典例(1)已知i是虚数单位,若复数(1ai)(2i)是纯虚数,则实数a等于()A2B.C D2(2)(江苏高考)复数z(12i)(3i),其中i为虚数单位,则z的实部是_解析(1)(1ai)(2i)2a(12a)i,要使复数为纯虚数,所以有2a0,12a0,解得a2.(2)(12i)(3i)3i6i2i255i,所以z的实部是5.答案(1)A(2)51两个复数代数形式乘法的一般方法(1)首先按多项式的乘法展开(2)再将i2换成1.(3)然后再进行复数的加、减运算,化简为复数的代数形式2常用公式(1)(abi)2a2b22abi(

4、a,bR)(2)(abi)(abi)a2b2(a,bR)(3)(1i)22i. 活学活用1已知x,yR,i为虚数单位,且xiy1i,则(1i)xy的值为()A2 B2iC4 D2i解析:选D由xiy1i得x1,y1,所以(1i)xy(1i)22i.2已知a,bR,i是虚数单位若(ai)(1i)bi,则abi_.解析:因为(ai)(1i)a1(a1)ibi,所以a10,a1b,即a1,b2,所以abi12i.答案:12i复数代数形式的除法运算典例(1)若复数z满足z(2i)117i(i是虚数单位),则z为()A35i B35iC35i D35i(2)设i是虚数单位,复数为纯虚数,则实数a为()A

5、2 B2C D.解析(1)z(2i)117i,z35i.(2)i,由是纯虚数,则0,0,所以a2.答案(1)A(2)A1两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式2常用公式(1)i;(2)i;(3)i.活学活用1(天津高考)i是虚数单位,计算的结果为_解析:i.答案:i2计算:_.解析:法一:2i.法二:2i.答案:2ii的乘方的周期性及应用典例(1)(湖北高考)i为虚数单位,i607的共轭复数为()Ai BiC1 D1(2)计算i1i2i3i2 016_.解析(1)因为i6

6、07i41513i3i,所以其共轭复数为i,故选A.(2)法一:原式0.法二:i1i2i3i40,inin1in2in30(nN),i1i2i3i2 016,(i1i2i3i4)(i5i6i7i8)(i2 013i2 014i2 015i2 016)0.答案(1)A(2)0虚数单位i的周期性(1)i4n1i,i4n21,i4n3i,i4n1(nN*)(2)inin1in2in30(nN)活学活用计算2310_.解析:i,原式ii2i3i10i12310i55i3i.答案:i复数综合应用典例设z是虚数,z是实数,且12,求|z|的值及z的实部的取值范围解因为z是虚数,所以可设zxyi,x,yR,

7、且y0.所以zxyixyixi.因为是实数且y0,所以y0,所以x2y21,即|z|1.此时2x.因为12,所以12x2,从而有x1,即z的实部的取值范围是.一题多变1变设问若本例中条件不变,设u,证明u为纯虚数证明:设zxyi,x,yR,且y0,由典例解析知,x2y21,ui.因为x,y0,所以0,所以u为纯虚数2变设问若本例条件不变,求2的最小值解:设zxyi,x,yR,且y0,由典例解析知x2y21.则22x22x22x2x2x12(x1)3.因为x1,所以1x0.于是22(x1)3231.当且仅当2(x1),即x0时等号成立所以2的最小值为1,此时zi.复数运算的综合问题解决方法在有关

8、复数运算的综合问题中,常与集合、数列、不等式、三角函数、函数、解析几何等内容结合在一起,要解决此类问题常将复数设为xyi(x,yR)的形式,利用有关条件及复数相等转化为实数问题或利用复数的几何意义转化为点的坐标及向量问题进行解决 层级一学业水平达标1复数(1i)2(23i)的值为()A64iB64iC64i D64i解析:选D(1i)2(23i)2i(23i)64i.2(全国卷)已知复数z满足(z1)i1i,则z()A2i B2iC2i D2i解析:选Cz11i,所以z2i,故选C.3(广东高考)若复数zi(32i)(i是虚数单位),则()A23i B23iC32i D32i解析:选Azi(3

9、2i)3i2i223i,23i.4(1i)20(1i)20的值是()A1 024 B1 024C0 D512解析:选C(1i)20(1i)20(1i)210(1i)210(2i)10(2i)10(2i)10(2i)100.5(全国卷)若a为实数,且3i,则a()A4 B3C3 D4解析:选Di3i,所以解得a4,故选D.6在复平面内,复数zi(13i)对应的点位于第_象限解析:zi(13i)i3i23i,复数z对应的点为(3,1),在第二象限答案:二7设i为虚数单位,则_.解析:i1i10.答案:08若1bi,其中a,b都是实数,i是虚数单位,则|abi|_.解析:a,bR,且1bi,则a(1

10、bi)(1i)(1b)(1b)i,|abi|2i|.答案:9计算:.解:因为i1,i,所以i1(i)1.10已知为z的共轭复数,若z3i13i,求z.解:设zabi(a,bR),则abi(a,bR),由题意得(abi)(abi)3i(abi)13i,即a2b23b3ai13i,则有解得或所以z1或z13i.层级二应试能力达标1如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()AABBCC DD解析:选B设zabi(a,bR),且a0,b0,则z的共轭复数为abi,其中a0,b0,故应为B点2设a是实数,且R,则实数a()A1 B1C2 D2解析:选B因为R,所以不妨设x,xR,

11、则1ai(1i)xxxi,所以有所以a1.3若a为正实数,i为虚数单位,2,则a()A2 B.C. D1解析:选B(ai)(i)1ai,|1ai|2,解得a或a(舍)4计算的值是()A0 B1Ci D2i解析:选D原式iii2i.5若z1a2i,z234i,且为纯虚数,则实数a的值为_解析:,为纯虚数,a.答案:6i是虚数单位,则4_.解析:4221.答案:17设复数z,若z20,求纯虚数a.解:由z20可知z2是实数且为负数z1i.a为纯虚数,设ami(mR且m0),则z2(1i)22ii0,m4,a4i.8复数z且|z|4,z对应的点在第一象限,若复数0,z,对应的点是正三角形的三个顶点,

12、求实数a,b的值解:z(abi)2ii(abi)2a2bi.由|z|4,得a2b24,复数0,z,对应的点构成正三角形,|z|z|.把z2a2bi代入化简得|b|1.又z对应的点在第一象限,a0,b0.由得故所求值为a,b1.(时间: 120分钟满分:150分)一、选择题(本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1i是虚数单位,复数()A2i B2iC2i D2i解析:选B2i.2若复数z满足i,其中i是虚数单位,则z()A1i B1iC1i D1i解析:选A(1i)ii2i1i,z1i,故选A.3设i是虚数单位,则复数在复平面内所对应的点位于(

13、)A第一象限B第二象限C第三象限 D第四象限解析:选B1i,由复数的几何意义知1i在复平面内的对应点为(1,1),该点位于第二象限,故选B.4设复数z1i(i为虚数单位),z的共轭复数是,则等于()A12i B2iC12i D12i解析:选C由题意可得12i,故选C.5已知复数zi,则|z|()Ai BiC.i D.i解析:选D因为zi,所以|z|i i.6已知复数z满足(1i)zi2 016(其中i为虚数单位),则的虚部为()A. BC.i Di解析:选B2 0164504,i2 016i41.zi,i,的虚部为.故选B.7设z的共轭复数为,若z4,z8,则等于()A1 BiC1 Di解析:

14、选D设zabi(a,bR),则abi,由条件可得解得因此或所以i,或i,所以i.8已知复数z(x2)yi(x,yR)在复平面内对应的向量的模为,则的最大值是()A. B.C. D.解析:选D因为|(x2)yi|,所以(x2)2y23,所以点(x,y)在以C(2,0)为圆心,以为半径的圆上,如图,由平面几何知识.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分请把正确答案填在题中横线上)9i是虚数单位,若复数(12i)(ai)是纯虚数,则实数a的值为_解析:由(12i)(ai)(a2)(12a)i是纯虚数可得a20,12a0,解得a2.答案:210已知复数z(52i)2(i为

15、虚数单位),则z的实部为_.解析:复数z(52i)22120i,其实部是21,2120i.答案:212120i11若a为实数,i,则a_,2ai在第_象限解析:i,可得2aii(1i)2i,所以a,2ai2i在第四象限答案:四12若复数z(a2)3i(aR)是纯虚数,则a_,_.解析:za23i(aR)是纯虚数,a2,i.答案:2i13已知复数z(i是虚数单位),则z的实部是_,|z|_.解析:z2i,z的实部是2.|z|2i|.答案:214设复数abi(a,bR)的模为,则(abi)(abi)_.解析:|abi|,(abi)(abi)a2b23.答案:315若关于x的方程x2(2i)x(2m

16、4)i0有实数根,则纯虚数m_.解析:设mbi(bR且b0),则x2(2i)x(2bi4)i0,化简得(x22x2b)(x4)i0,即解得m4i.答案:4i三、解答题(本大题共5小题,共74分解答应写出文字说明、证明过程或演算步骤)16(本小题满分14分)设复数zlg(m22m2)(m23m2)i(mR),试求m取何值时?(1)z是实数. (2)z是纯虚数(3)z对应的点位于复平面的第一象限解:(1)由m23m20且m22m20,解得m1或m2,复数表示实数(2)当实部等于零且虚部不等于零时,复数表示纯虚数由lg(m22m2)0,且m23m20,求得m3,故当m3时,复数z为纯虚数(3)由lg

17、(m22m2)0,且m23m20,解得m2或m3,故当m2或m3时,复数z对应的点位于复平面的第一象限17(本小题满分15分)已知(12i)43i,求z及.解:设zabi(a,bR),则abi.(12i)(abi)43i,(a2b)(2ab)i43i.由复数相等,解得解得z2i.i.18(本小题满分15分)已知z1i,a,b为实数(1)若z234,求|;(2)若1i,求a,b的值解:(1)(1i)23(1i)41i,所以|.(2)由条件,得1i,所以(ab)(a2)i1i,所以解得19(本小题满分15分)虚数z满足|z|1,z22z0,求z.解:设zxyi(x,yR,y0),x2y21.则z22z(xyi)22(xyi)(x2y23x)y(2x1)i.y0,z22z0,又x2y21.由得zi.20(本小题满分15分)已知复数z满足|z|,z2的虚部是2.(1)求复数z;(2)设z,z2,zz2在复平面上的对应点分别为A,B,C,求ABC的面积解:(1)设zabi(a,bR),则z2a2b22abi,由题意得a2b22且2ab2,解得ab1或ab1,所以z1i或z1i.(2)当z1i时,z22i,zz21i,所以A(1,1),B(0,2),C(1,1),所以SABC1.当z1i时,z22i,zz213i,所以A(1,1),B(0,2),C(1,3),所以SABC1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3