1、【A级】基础训练1在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是0.2、0.2、0.3、0.3则下列说法正确的是()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件解析:由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件答案:D2(2012高考安徽卷)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球从袋中任取两球
2、,两球颜色为一白一黑的概率等于()A.BC. D解析:将同色小球编号从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而一白一黑的共有6个基本事件,P.故选B.答案:B3甲、乙二人下棋,甲获胜的概率是0.3,甲不输的概率为0.8,则甲、乙二人下成和棋的概率为()A0.6 B0.3C0.1 D0.5解析:甲不输即为甲获胜或甲、乙二人下成和棋,0.80.3P(和棋),P
3、(和棋)0.5.答案:D4(1)某人投篮3次,其中投中4次是_事件;(2)抛掷一枚硬币,其落地时正面朝上是_事件;(3)三角形的内角和为180是_事件解析:(1)共投篮3次,不可能投中4次;(2)硬币落地时正面和反面朝上都有可能;(3)三角形的内角和等于180.答案:(1)不可能(2)随机(3)必然5从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(AB)_(结果用最简分数表示)解析:一副扑克中有1张红桃K,13张黑桃,事件A与事件B为互斥事件,P(AB)P(A)P(B).答案:6向三个相邻的军火库各投一枚炸弹击中第一个军火库的概率是0.0
4、25,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为_解析:设A、B、C分别表示击中第一、二、三个军火库,易知事件A、B、C彼此互斥,且P(A)0.025,P(B)P(C)0.1.设D表示军火库爆炸,则P(D)P (A)P(B)P(C)0.0250.10.10.225.所以军火库爆炸的概率为0.225.答案:0.2257(2012高考湖南卷)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟
5、/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)解:(1)由已知得25y1055,x3045,所以x15,y20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟)(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”
6、,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”将频率视为概率得P(A1),P(A2),P(A3).因为AA1A2A3,且A1,A2,A3是互斥事件,所以P(A)P(A1A2A3)P(A1)P(A2)P(A3).故一位顾客一次购物的结算时间不超过2分钟的概率为.8如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10202030 304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间
7、落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有121216444(人),用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:所用时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时
8、,在50分钟内赶到火车站由(2)知P(A1)0.10.20.30.6,P(A2)0.10.40.5,P(A1)P(A2),甲应选择L1.同理,P(B1)0.10.20.30.20.8,P(B2)0.10.40.40.9,P(B1)P(B2),乙应选择L2.【B级】能力提升1(2014黄冈模拟)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则此射手在一次射击中不够8环的概率为()A0.40B0.30C0.60 D0.90解析:依题意,射中8环及以上的概率为0.200.300.100.60,故不够8环的概率为10.600.40.答案:A2口袋中有100个大小相
9、同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A0.45 B0.67C0.64 D0.32解析:P(摸出黑球)10.450.230.32.答案:D3甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是()A甲获胜的概率是 B甲不输的概率是C乙输了的概率是 D乙不输的概率是解析:“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率是P1;设事件A为“甲不输”,则A是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A);乙输了即甲胜了,所以乙输了的概率为;乙不输的概率为1.答案:A4从1,2,3,4这四个数中一次随机地
10、取两个数,则其中一个数是另一个数的两倍的概率是_解析:从1,2,3,4这四个数中一次随机地取两个数的种数为6,其中一个数是另一个数的两倍的数对为1,2和2,4.故符合条件的概率为.答案:5从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组90,100)100,110)110,120)120,130)130,140)140,150)频数1231031则这堆苹果中质量不小于120克的苹果数约占苹果总数的_%.解析:由表中可知这堆苹果中,质量不小于120克的苹果数为:2012314.故约占苹果总数的0.70,即70%.答案:706(2014孝感模拟)已知盒子中有散落的棋子15
11、粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是_解析:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子的概率的和,即为.答案:7(创新题)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较在试制某种牙膏新品种时,需要选用两种不同的添加剂现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率;(2)求所选用的两种不同的添加剂的芳香度之和不小
12、于3的概率解:设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B.从六种中随机选两种共有(0,1)、(0,2)、(0,3)、(0,4)、(0,5)、(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),15种(1)“所选用的两种不同的添加剂的芳香度之和等于4”的取法有2种:(0,4)、(1,3),故P(A).(2)“所选用的两种不同的添加剂的芳香度之和等于1”的取法有1种:(0,1);“所选用的两种不同的添加剂的芳香度之和等于2”的取法有1种:(0,2),故P(B)1.