1、对数的概念 (建议用时:40分钟)一、选择题1将29写成对数式,正确的是()Alog92B92C(2)9Dlog9(2)B根据对数的定义,得92.2已知loga32log21,则a的值为()A2B3C8D9B2 log211,loga31,a3.3已知logx83,则x的值为()AB2C3D4B由定义知x38,所以x2.4方程2log3x的解是()AxBxCxDx9A2log3x22,log3x2,x32.5设f(x)则f(f(2)的值为()A0B1C2D3Cf(2)log3(221)log331,f(f(2)f(1)2e112e02.二、填空题6方程log3(2x1)1的解为x_.2原方程同
2、解于log3(2x1)log33,所以2x13,x2.7log6log4(log381)_.0原式log6log4(log334)log6(log44)log610.8若loga2m,loga3n,则a2mn_.12loga2m,loga3n,am2,an3.a2mn(am)2an22312.三、解答题9求下列各式中的x.(1)log2(log5x)1;(2)logx 8.解(1)由log2(log5x)1得log5x2,x25.(2)由logx8得x8,x8,即x(23),x2416.10已知log189a,log1854b,求182ab的值解log189a,log1854b,18a9,18
3、b54,182ab.11(多选)下列指数式与对数式互化正确的有()Ae01与ln 10Blog392与93C8与log8Dlog771与717ACDlog392化为指数式为329,故B错误,ACD正确12已知f(2x1),则f(4)()Alog25Blog23CDB令2x14,得xlog23,所以f(4)log23.13利用对数恒等式alogaNN(a0,且a1,N0)计算:14已知log2(log3(log4x)0,且log4(log2y)1.则y 的值为_64log2(log3(log4x)0,log3(log4x)1,log4x3,x4364.由log4(log2y)1,知log2y4,y2416.因此y168864.15已知loga blogb a(a0且a1;b0且b1),求证:ab或a.证明设loga blogb ak,则bak,abk,b(bk)kbk2.b0且b1,k21,即k1.当k1时,a;当k1时,ab.ab或a.