1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专题训练试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域
2、种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD2、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D23、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为( )A12个B9个C6个D3个4、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD5、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能二、多
3、选题(5小题,每小题4分,共计20分)1、下列说法正确的是()A“射击运动员射击一次,命中靶心”是随机事件B某彩票的中奖机会是1%,买100张一定会中奖C抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是D某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人2、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a0)的图象与x轴的交点的横坐标分别为1、3,则下列结论中正确的有()Aabc0B2a+b=0C3a+2c0D对于任意x均有ax2a+bxb0 线 封
4、密 内 号学级年名姓 线 封 密 外 3、二次函数(,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有()ABCD时,方程有解4、已知抛物线(,是常数,)经过点,当时,与其对应的函数值下列结论正确的是()ABCD关于的方程有两个不等的实数根5、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x
5、1x2,则x115x2第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是_度2、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_3、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃设花圃的宽AB为x米,面积为S平方米则S与x的函数关系式是_,自变量x的取值范围是_4、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值
6、范围是_.5、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大四、解答题(5小题,每小题8分,共计40分)1、小敏与小霞两位同学解方程的过程如下框: 线 封 密 内 号学级年名姓 线 封 密 外 小敏:两边同除以,得,则小霞:移项,得,提取公因式,得则或,解得,你认为他们的解法是否正确?若正确请在框内打“”;若错误请在框内打“”,并写出你
7、的解答过程2、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情
8、”影响的困难家庭,当时,每天的最大利润为229200元,求a的值3、已知关于的一元二次方程(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根4、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:5、用适当的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-20-参考答案-一、单选题1、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【考点】本题主要考
9、查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.2、C 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解3、A【解析】【详解】解:口袋中装有4个黑球且摸到黑球的概率为,口袋中球的总数为:4=12(个)故选A4、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(
10、1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键5、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、ACD【解析】【分析】根据随机事件的定义(随机事件是指在一定条件下可能发生也可能不发生的事件)可判断A;由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖可判断B;利用列举法将所有可能列举出来
11、,求满足条件的概率即可判断C;根据计算公式列出算式,即可判断D【详解】解:A、“射击运动员射击一次,命中靶心”是随机事件,选项正确;B、由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖,选项说法错误,不符合题意;C、抛掷一枚质地均匀的硬币两次,所有可能出现的结果有:(正,正),(正,反),(反,正),(反,反),则两次都是“正面朝上”的概率是,选项正确;D、根据计算公式该项人数等于该项所占百分比乘以总人数,选项正确,符合题意故选:ACD【考点】本题主要考查随机事件的定义,概率发生的可能性、求随机事件的概率与求某项的人数,根据等可能事件的概率公式求解是解题关键2、BD【解析】【分析
12、】由抛物线开口方向得到a0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+cax2+bx+c,于是可对D进行判断【详解】解:抛物线开口向上,a0,抛物线与x轴的交点的坐标分别为(-1,0),(3,0),抛物线的对称轴为直线x=1,即-=1,b=-2a0,抛物线与y轴的交点在x轴下方,c0,abc0,所以A错
13、误;b=-2a,2a+b=0,所以B正确;x=-1时,y=0,a-b+c=0,即a+2a+c=0,c=-3a,3a+2c=3a-6a=-3a0,所以C错误;x=1时,y的值最小, 线 封 密 内 号学级年名姓 线 封 密 外 对于任意x,a+b+cax2+bx+c,即ax2-a+bx-b0,所以D正确故选:BD【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解3、BCD【解析】【分析】根
14、据抛物线与轴有两个交点,可知,即可判断A选项;根据时,即可判断B选项;根据对称轴,即可判断C选项;D根据抛物线的顶点坐标为,函数有最大即可判定D【详解】解:由图象可知,抛物线开口向下,对称轴在轴的右侧,与轴的交点在轴的负半轴,抛物线与轴有两个交点,即,故A错误;由图象可知,时,故B正确;抛物线的顶点坐标为,即,故C正确;抛物线的开口向下,顶点坐标为,(为任意实数),即时,方程有解故D正确故选BCD【考点】本题主要考查了二次函数的性质、二次函数图像等知识点,掌握二次函数的性质与解析式的关系是解答本题的关键4、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算
15、判断即可【详解】抛物线(是常数,)经过点(-1,-1),当时,与其对应的函数值,c=10,a-b+c= -1,4a-2b+c1,a-b= -2,2a-b0,2a-a-20,a20,b=a+20,abc0,故A错误;b=a+2,a2,c=1,故B正确; 线 封 密 内 号学级年名姓 线 封 密 外 a+b+c=a+a+2+1=2a+3,a2,2a4,2a+34+37,即,故C正确;,=0,有两个不等的实数根,故D正确故选:BCD【考点】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键5、ABE【解
16、析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个交点为(5,0),抛物线开口向下,当x3
17、时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0),ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称,A(3,)在抛物线上,=,3 12 ,在对称轴的左侧,抛物线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3作x轴的平行线,直线y3 线 封 密 内 号学级年名姓 线 封 密 外 与抛物线的交点的横坐标为方程的两根,抛物线与x轴交
18、点为(-1,0),(5,0),依据函数图象可知:15,故E正确故答案为:ABE【考点】本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;= b4 ac0时,抛物线与x轴没有交点三、
19、填空题1、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据
20、等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握2、1或 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻
21、折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键3、 S3x224x x8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长宽,得出S与x的函数关系式,并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围解:由题可知,花圃的宽AB为x米,则BC为(243x)米.S=x
22、(243x)=3x2+24x.0243x10,解得x8,故答案为S3x224x,x8.4、【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上,.故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.5、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x11880,再根据二次函数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意
23、得,y=x30030(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键四、解答题1、两位同学的解法都错误,正确过程见解析【解析】【分析】根据因式分解法解一元二次方程【详解】解:小敏:两边同除以,得,则()小霞:移项,得,提取公因式,得则或,解得,()正确解答:移项,得,提取公因式,得,去括号,得, 线 封 密 内 号学级年名姓 线 封 密 外 则或,解得,【考点】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关
24、键2、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论【详解】解:(1)由题意得,解得,故的取值范围为且为整数;(2)的取值范围为理由如下:,当时,解得:或要使,得;,;(3)设捐款后每天的利润为元,则,对称轴为,抛物线开口向下,当时,随的增大而增大,当时,最大,解得【考点】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式等等,最大销售利润的问题常利用函数的增减性来解答3、证明见祥解; 【解析】 线
25、封 密 内 号学级年名姓 线 封 密 外 【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值【详解】证明:是关于的一元二次方程,此方程总有两个实数根解:,方程的两个实数根都为正整数,解得,【考点】本题考查了根的判别式,配方为平方式,根据方程的两个实数根都为正整数,列出不等式组,求出是解题的关键4、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法
26、错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上 线 封 密 内 号学级年名姓 线 封 密 外 (3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键5、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为(x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,得x2+4x+46,即(x+2)26,两边开平方,得x+2,x1-2,x2-2【考点】本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法
Copyright@ 2020-2024 m.ketangku.com网站版权所有