ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:393.59KB ,
资源ID:709343      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-709343-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年综合复习人教版九年级数学上册期中综合复习试题 卷(Ⅰ)(含答案详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年综合复习人教版九年级数学上册期中综合复习试题 卷(Ⅰ)(含答案详解).docx

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若关于的一元二次方程的两根分别为,则二次函数的对称轴为直线()AB

2、CD2、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是()ABCD3、设方程的两根分别是,则的值为()A3BCD4、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc05、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大二、多选题(5小题,每小题4分,共计20分)1、二次函数的图像如图所示,下列结论中正确的是()ABC抛物线与

3、x轴的另一个交点为D2、二次函数y=ax2+bx+c(a0)的图象如图所示,则下列说法中正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 Aabc0B2a+b=0C9a+3b+c0D当1x3时,y0E当x0时,y随x的增大而减小3、下列关于x的方程的说法正确的是()A一定有两个实数根B可能只有一个实数根C可能无实数根D当时,方程有两个负实数根4、下列方程中,有实数根的方程是()A(x1)22B(x+1)(2x3)0C3x22x10Dx2+2x+405、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是(

4、)ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠的最大高度是_ 2、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_3、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.4、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.5、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_四、

5、解答题(5小题,每小题8分,共计40分)1、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润2、红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件其中月销售单价不低于成本设月销售单价为x(单位:元/件),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2

6、)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值3、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元(1)求甲、乙两种商品每箱各盈利多少元? 线 封 密 内 号学级年名姓 线 封 密 外 (2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱如调整价格,每降价1元,平均每天可以多卖出20箱,那

7、么当降价多少元时,该商场利润最大?最大利润是多少?4、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,ABC为等边三角形,求SABC;5、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?-参考答案-一、单选

8、题1、C【解析】【分析】根据两根之和公式可以求出对称轴公式【详解】解:一元二次方程ax2bxc0的两个根为2和4,x1x2 2二次函数的对称轴为x21故选:C【考点】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用2、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与

9、几何变换.3、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率4、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,

10、因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系5、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】本题主要考查了待定系数法求二次函数的解

11、析式以及二次函数的性质,利用二次函数的性质解答是解 线 封 密 内 号学级年名姓 线 封 密 外 题关键二、多选题1、AD【解析】【分析】根据抛物线的对称轴为直线,则可对A进行判断;利用,函数值为负,可对B进行判断;通过求点关于直线的对称点,可对C进行判断;由抛物线开口向上得到,则,再由抛物线与轴的交点在轴下方得到,即可对D进行判断【详解】解:A、抛物线的对称轴为直线,即,选项说法正确,符合题意;B、由抛物线的对称性可,知时,即,选项说法错误,不符合题意;C、点关于直线的对称点,抛物线与x轴的另一个交点为,选项说法错误,不符合题意;D、抛物线开口向上,又抛物线与轴的交点在轴下方,选项说法正确,

12、符合题意;故选AD【点睛】本题考查了二次函数的图像与性质,解题的关键是熟练运用二次函数的图像与系数的关系2、BDE【解析】【分析】A由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;B.函数图象的对称轴为:x=-=1,所以b=-2a,即2a+b=0;C.根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;D.由图象得到函数值小于0时,x的范围即可作出判断;E.由图象得到当x0时,y随x的变化而变化的趋势【详解】解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a

13、0,c0,b0,所以abc0故A错误;根据图象得对称轴x=1,即-=1,所以b=-2a,即2a+b=0,故B正确;当x=3时,y=0,即9a+3b+c=0故C错误;根据图示知,当-1x3时,y0,故D正确;根据图示知,当x0时,y随x的增大而减小,故E正确;故选BDE【点睛】本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定3、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可【详解】解: 线 封 密 内 号学级年名姓 线 封 密 外 当a=0时,方程整理为解得, 选项B正确

14、;故选项A错误;当时,方程是一元二次方程,此时的方程表两个不相等的实数根,故选项C错误;若时, ,当时,方程有两个负实数根选项D正确,故选:BD【点睛】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键4、ABC【解析】【分析】根据直接开方法可确定A选项正确;根据因式分解法可确定B选项正确;根据方程的判别式,当时,方程有两个不等的实数根,当时,方程有两个相等的实数根,当时,方程无实数根,可判断C选项正确,D选项错误【详解】A.,解得:,方程有实数根,A选项正确;B.,解得:,方程有实数根,B选项正确;C.,方程有实数根,C选项正确;D.,方程无实数根,D选项错误故

15、选:ABC【点睛】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键5、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如 线 封 密 内 号学级年名姓 线 封 密 外 果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析

16、可得,D是平移变化;故答案为:A;C【点睛】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系三、填空题1、3【解析】【分析】把二次函数化为顶点式,进而即可求解【详解】解:,当x=1时,故答案是:3【考点】本题主要考查二次函数的图像和性质,掌握二次函数的顶点式,是解题的关键2、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用3、【解析】【分析】

17、由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上, 线 封 密 内 号学级年名姓 线 封 密 外 .故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.4、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析式【详解】解:依题意得此函数解析式顶点为,设解析式为,又函数图象经过,.故答案为 .【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使

18、解题简单,此题设为顶点式比较简单.5、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键四、解答题1、 (1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1) 线 封 密 内 号学级年名姓 线 封 密 外 解

19、:设,把,和,代入可得,解得,则;(2)解:每月获得利润 ,当时,P有最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值2、(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4【解析】【分析】(1)分和两种情况,根据“月销售单价每涨价1元,月销售量就减少万件”即可得函数关系式,再根据求出的取值范围;(2)在(1)的基础上,根据“月利润(月销售单价成本价)月销

20、售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得【详解】解:(1)由题意,当时,当时,解得,综上,;(2)设该产品的月销售利润为万元,当时,由一次函数的性质可知,在内,随的增大而增大,则当时,取得最大值,最大值为;当时,由二次函数的性质可知,当时,取得最大值,最大值为90,因为,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大

21、利润是78万元(大于50万元),设该产品捐款当月的月销售利润为万元, 线 封 密 内 号学级年名姓 线 封 密 外 由题意得:,整理得:,在内,随的增大而增大,则当时,取得最大值,最大值为,因此有,解得【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键3、(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元【解析】【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据

22、二次函数的性质求出函数的最值【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得: ,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元【点睛】

23、本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式4、 【解析】【分析】过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),于是得到对称轴为直线x=2,设B(m,n),根据ABC是等边三角形,得到BC=AB=2m-4,BCP=ABC=60,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根据三角形的面积公式即可得到结果【详解】解:过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),对称轴为直线x=2, 线 封 密 内 号学级年名姓 线 封 密 外 设B(m,n),CP=m-

24、2,ABx轴,AB=2m-4,ABC是等边三角形,BC=AB=2m-4,BCP=ABC=60,PB=PC=(m-2),PB=n=,(m-2)=,解得m=,m=2(不合题意,舍去),AB=,BP=,SABC=【点睛】本题考查二次函数的性质.5、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为

25、w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1