ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:48.52KB ,
资源ID:70723      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-70723-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《同步测控》2015-2016学年高二数学人教A版选修2-2素材链接:2.3 数学归纳法 WORD版含答案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《同步测控》2015-2016学年高二数学人教A版选修2-2素材链接:2.3 数学归纳法 WORD版含答案.docx

1、2.3数学归纳法教学建议1.教材分析数学归纳法是一种直接证明的方法,仅适用于与正整数有关的数学命题的证明.本节通过类比多米诺骨牌游戏,得出数学归纳法的两个步骤,然后通过两个例题介绍数学归纳法的应用.重点:数学归纳法的原理及应用.难点:数学归纳法的思想实质及在归纳推理中发现具体问题的递推关系.2.主要问题及教学建议(1)关于数学归纳法所证结论的正确性.建议教师就归纳推理的几种情形介绍一下.不完全归纳:只考察了部分对象,结论不一定正确.完全归纳(枚举法):考察了问题所涉及的所有对象,结论一定正确.数学归纳法:通过有限个步骤的推理,证明了n取无限多个正整数时的情形,本质上相当于完全归纳,结论是正确的

2、.(2)对于假设的使用.建议教师通过具体例子,说明证明过程中不用假设也能证出某些题目,但不是数学归纳法证明,也就不必再按数学归纳法的步骤进行.备选习题1.证明:如果x是实数,且x-1,x0,n为大于1的自然数,那么(1+x)n1+nx.证明:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因为x0,所以不等式成立.(2)假设当n=k时不等式成立,即(1+x)k1+kx.那么当n=k+1时,左边=(1+x)k+1=(1+x)k(1+x),因为x-1,所以(1+x)k(1+x)(1+kx)(1+x)=1+(k+1)x+kx21+(k+1)x.所以当n=k+1时,不等式成立.由

3、(1)(2)及数学归纳法可知所证不等式成立.2.用数学归纳法证明62n-1+1(nN*)能被7整除.证明:(1)当n=1时,62-1+1=7,能被7整除.(2)假设当n=k(kN*,k1)时,62k-1+1能被7整除.那么当n=k+1时,62(k+1)-1+1=62k-1+2+1=36(62k-1+1)-35.62k-1+1能被7整除,35也能被7整除,当n=k+1时,62(k+1)-1+1能被7整除.由(1)(2)知命题成立.3.试比较2n与n2(n5,nN*)的大小.解:当n=5时,2552,即2nn2.当n=6时,2662,即2nn2;.猜想:当n5,nN*时,2nn2.下面用数学归纳法证明猜想成立:(1)当n=5时,猜想成立.(2)假设当n=k(k5,kN*)时猜想成立,即2kk2,那么,当n=k+1时,2k+1=22k2k2=k2+k2k2+(2k+1)=(k+1)2,即当n=k+1也成立.根据(1)和(2),可知当n5时,2nn2对任何nN*都成立(n5).2

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3