1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在ABC中,D为BC上一点,12,34,BAC105,则DA
2、C的度数为()A80B82C84D862、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点周围有块正三角形和块正六边形地板砖,则的值为()A3或4B4或5C5或6D43、如图,已知ABAC,ADAE,AB=AC,AD=AE,则BFD的度数是()A60B90C45D1204、如图,已知和都是等腰三角形,交于点F,连接,下列结论:;平分;其中正确结论的个数有()A1个B2个C3个D4个5、如图,已知,则图中全等三角形的总对数是A3B4C5D6二、多选题(5小题,每小题4分,共计20分)1、如图,在中,是角平分线,是中线,则下列结论,其中不正确的结论 线 封 密 内 号学级年名姓 线 封
3、密 外 是()ABCD2、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27米D18米3、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米4、如图,在中,点,分别是边,上的点,且,相交于点,若点是的重心,则以下结论,其中一定正确结论有()A线段,是的三条角平分线B的面积是面积的一半C图中与面积相等的三角形有5个D的面积是面积的5、如图,AEDF,AEDF,要使EACFDB,需要添加下列选项中的()AEFBECBFCABCDDABBC第卷(非选择题
4、65分)三、填空题(5小题,每小题5分,共计25分)1、如图,ACBC于点C,DEBE于点E,BC平分ABE,BDE=58,则A=_2、如图,在四边形中,于,则的长为_3、一副三角尺如图摆放,是延长线上一点,是上一点,若,则等于_度 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,中,D为延长线上一点,且,与的延长线交于点P,若,则_5、如图,如图,A+B+C+D+E+F+G=_四、解答题(5小题,每小题8分,共计40分)1、已知:如图,ABC是任意一个三角形,求证:A+B+C=1802、如图,在中,点在的延长线上,于点,若,求证:3、如图,在ABC中,ACB90,用直尺和圆规在斜边A
5、B上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)4、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE5、如图,垂足分别为与相交于点, 线 封 密 内 号学级年名姓 线 封 密 外 (1)求证:;(2)在不添加任何辅助线的情况下,请直接写出图中四对全等的三角形-参考答案-一、单选题1、A【解析】【分析】根据三角形的内角和定理和三角形的外角性质即可解决【详解】解:BAC105,237512,431222把代入得:32
6、75,225DAC1052580故选A【考点】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键2、B【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌【详解】正三边形和正六边形内角分别为60、120,604+120=360,或602+1202=360,a=4,b=1或a=2,b=2,当a=4,b=1时,a+b=5;当a=2,b=2时,a+b=4故选B【考点】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合3、
7、B【解析】【分析】先证BAECAD,得出B=C,再证CFB=BAC=90即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:ABAC,ADAE,BAC=DAE=90,BAE=CAD,在BAE和CAD中,,BAECAD,B=C,BGA=CGF,CFB=BAC=90,BFD=90,故选:B【考点】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数4、C【解析】【分析】证明BADCAE,再利用全等三角形的性质即可判断;由BADCAE可得ABF=ACF,再由ABF+BGA=90、BGA=CGF证得BFC=90即可判定;分别过A作AMBD、ANCE,根据全等三
8、角形面积相等和BD=CE,证得AM=AN,即AF平分BFE,即可判定;由AF平分BFE结合即可判定【详解】解:BAC=EADBAC+CAD=EAD+CAD,即BAD=CAE在BAD和CAE中AB=AC, BAD=CAE,AD=AEBADCAEBD=CE故正确;BADCAEABF=ACFABF+BGA=90、BGA=CGFACF+BGA=90,BFC=90故正确;分别过A作AMBD、ANCE垂足分别为M、N 线 封 密 内 号学级年名姓 线 封 密 外 BADCAESBAD=SCAE, BD=CEAM=AN平分BFE,无法证明AF平分CAD故错误;平分BFE,故正确故答案为C【考点】本题考查了全
9、等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键5、D【解析】【分析】根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DAC=BCA,CDB=ABD,DCA=BAC,ADB=CBD,又BE=DF,由ADB=CBD,DB=BD,ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AOD=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得C
10、ODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可得DOFBOE;故选D【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边二、多选题1、ACD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据三角形中线的定义:在三角形中,连接一个顶点和它所对的边的中点的线段,和角平分线的定义进行逐一判断即可【详解】解:AD是角平分线,BAC=
11、90,DAB=DAC=45,故B选项不符合题意;AE是中线,AE=EC,故D符合题意;AD不是中线,AE不是角平分线,得不到BD=CD,ABE=CBE,A和C选项都符合题意,故选ACD【考点】本题主要考查了三角形中线的定义,角平分线的定义,解题的关键在于能够熟练掌握相关定义2、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式
12、是解此题的关键3、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4、BCD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据三角形重心的性质分别判断即可;【详解】三角形的重心是三角形三条边中线的交点,线段,是的三条中线,不是角平分线,故A错误;三角形的重心是三角形三条边中线的交点,的面积是面积的一半,故B正确;三角形的重心是三角形三条边中线的交点,图中与面积相等的三角形有5个,故C正确;三角形
13、的重心是三角形三条边中线的交点,重心到顶点的距离与重心到对边中点的距离之比是,的面积是面积的,故D正确;故选BCD【考点】本题主要考查了重心的定义理解,准确分析判定是解题的关键5、AC【解析】【分析】由条件可得A=D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案【详解】解:AEDF,A=D,AE=DF,要使EACFDB,还需要AC=BD或E=F或ACE=DBF,当AB=CD时,可得AB+BC=BC+CD,即AC=BD,选项A、C符合, B、D不符合故选:AC【考点】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键三、填空题1、58【解析】【详解】BC平分ABE,A
14、BC=DBE,ACBC,DEBE,A+ABC=90,BDE+DBE=90,A=BDE=582、【解析】【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:过点B作交DC的延长线交于点F,如右图所示, , , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型3、15【解析】【分析】根据三角形内角和定理得出ACB=60,DEF=45,再根据两直线平行内错角相等得到CEF=ACB=60,根据角的和差求解即可.【详解】解:在ABC中,ACB
15、=60.在DEF中,EDF=90,DEF=45.又,CEF=ACB=60,CED=CEF-DEF=60-45=15.故答案为:15.【考点】本题考查三角形内角和定理及平行线的性质,熟练掌握平行线的性质是解题的关键.4、【解析】【分析】作于,根据全等三角形性质得出CP=PM,DC=AM,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:作于,在和中,在和中,设,故答案为:【考点】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力5、【解析】【分析】连接BC、AD根据四边形的内
16、角和定理以及三角形的内角和是180进行分析求解【详解】解:如图,连接BC、AD 线 封 密 内 号学级年名姓 线 封 密 外 在四边形BCEG中,得E+G+ECB+GBC=360,又因为1+2=3+4,5+6+F=180,4+5+3+6=CAF+BDF,即1+2+5+6=CAF+BDF,所以CAF+B+C+BDF+E+F+G=540,即A+B+C+D+E+F+G=540故答案为:540【考点】本题考查了四边形内角和定理以及三角形内角和定理,解题的关键是能够巧妙构造四边形,根据四边形的内角和定理以及三角形的内角和定理进行求解四、解答题1、证明见解析【解析】【分析】过点A作EFBC,利用EFBC,
17、可得1=B,2=C,而1+2+BAC=180,利用等量代换可证BAC+B+C=180【详解】解:如图,过点A作EFBC,EFBC,1=B,2=C,1+2+BAC=180,BAC+B+C=180,即A+B+C=180【考点】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键2、证明见解析【解析】【分析】利用AAS证明,根据全等三角形的性质即可得到结论【详解】证明:,ADE=90,ACB=ADE,在和中 线 封 密 内 号学级年名姓 线 封 密 外 ,AE=AB,AC=AD,AE-AC=AB-AD,即EC=BD【考点】本题考查全等三角形的判定和性质,解题的关
18、键是熟练掌握基本知识3、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.4、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMBFM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(2)BFAE,MFB=MEA,AEC=90,MFB=90,BF
19、D=90,BFD=AEC, 线 封 密 内 号学级年名姓 线 封 密 外 DBF=CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键5、(1)见解析;(2),【解析】【分析】(1)根据垂直的定义得出BDF=CEF=90,根据AAS可以推出BDFCEF,根据全等三角形的性质得出即可;(2)根据全等三角形的性质得出B=C,BD=CE,DF=EF,求出AB=AC,再根据全等三角形的判定定理推出ADFAEF,ABFACF,ACDABE【详解】证明:, 在和中(AAS) ,理由是:由(1)知:BFDCFE,所以DF=EF,B=C,BD=CE,根据HL可以推出ADFAEF,所以AD=AE,BD=CE,AB=AC,根据SAS可以推出ABFACF,根据HL可以推出ACDABE【考点】本题考查了全等三角形的性质和判定,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL