1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、抛物线y3(x2)2+5的顶点坐标是()A(2,5)B(2,5)C(
2、2,5)D(2,5)2、二次函数的图象的对称轴是()ABCD3、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有()A2 个B3 个C4 个D5 个4、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,695、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个二、多选题(5小题,每小题4分,共计20分)1、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2
3、H(x+1)2=x292、下列关于x的方程的说法正确的是()A一定有两个实数根B可能只有一个实数根C可能无实数根D当时,方程有两个负实数根3、如图,抛物线过点,对称轴是直线下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABC若关于x的方程有实数根,则D若和是抛物线上的两点,则当时,4、下面的图形中,绕着一个点旋转120后,能与原来的位置重合的是()ABCD5、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区
4、居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.2、已知二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为_3、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_4、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_5、试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2
5、之间:_四、解答题(5小题,每小题8分,共计40分)1、端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润2、某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少商家决定当售价为60元/件时
6、,改变销售策略,此时售价每增加1元需支付由此产生的额外费用 线 封 密 内 号学级年名姓 线 封 密 外 150元该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?3、如图,在矩形ABCD中,AB12 cm,BC6 cm点P沿AB边从点A开始向点B以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动如果点P,Q同时出发,用t(s)表示移动的时间(0t0,a+b+c0,故命题正确;(5)抛物线与x轴于两个交点,b2-4ac0,故命题正确;故选C【考点
7、】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用4、A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方5、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴, 线 封 密 内 号学级年名姓 线 封 密 外 0,b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1
8、)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键二、多选题1、AC【解析】【分析】根据一元二次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-
9、9是一元一次方程故选AC【点睛】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程2、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可【详解】解:当a=0时,方程整理为解得, 选项B正确;故选项A错误;当时,方程是一元二次方程,此时的方程表两个不相等的实数根,故选项C错误;若时, , 线 封 密 内 号学级年名姓 线 封 密 外 当时,方程有两个负实数根选项D正确,故选:BD【点睛】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键3、D【解析】【详解】解:A.抛
10、物线开口向下,a0,对称轴在y轴左侧,a、b同号,b0,abc0,故此选项不符合题意;B.(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),抛物线过点,对称轴是直线,抛物线与x轴另一交点为(2,0), 当x=2时,y=ax2+bx+c=4a+c+2b=0,(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,(4a+c)2=4b2,故此选项不符合题意;C.,b=2a,当x=2时,y=ax2+bx+c=4a+c+2b=0,4a+c+4a=0,c=-8a,关于x的方程有实数根,=b2-4a(c-m)0,(2a)2-4a(-8a-m) 0,a|x2+1|,点(x1,y
11、1)到对称轴的距离大于点(x2,y2) 到对称轴的距离,y1y2,故此选项符合题意;故选:D【点睛】本题考查二次函数图象与系数的关系,二次函数的性质,二次函数与一元二次方程的联系,熟练掌握二次函数图象性质是解题的关键4、AB 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据旋转的性质对题中图形进行分析即可【详解】解:A、旋转任意角度都与原图形重合,故符合题意;B、旋转最小的度数是120度与原图形重合,故符合题意;C、旋转最小的度数是72度(72度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意;D、旋转最小的度数是90度(90度的整倍数都可以)与原图
12、形重合,则旋转120度不能与原图形重合,故不符合题意故选AB【点睛】本题主要考查了图形的旋转,理解旋转的定义是解题的关键5、ABD【解析】【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题【详解】A、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,对称轴x= 0,应在y轴的左侧,图形错误,故符合题意B、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意C、对于直线y=bx+a来说,由图象可以判断
13、,a0,b0;而对于抛物线来说,图象开口向下,对称轴x=位于 y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象开口向下,a0,故不合题意,图形错误,故符合题意故选ABD【点睛】主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答三、填空题1、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求
14、解.【详解】解:设该地区人均收入增长率为x,则300(1+x)2=432,(1+x)2=1.44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键. 线 封 密 内 号学级年名姓 线 封 密 外 2、y=x2+x【解析】【分析】利用抛物线与x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入即可求出顶点坐标,设顶点式即可求出二次函数表达式.【详解】解:二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,A(-4,0),B(
15、2,0),顶点横坐标为-1,又顶点在函数y=2x的图象上,将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.3、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键4、3x1【解析】【分析】根据
16、抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,0),由图象可知,当y0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键5、【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 由一元二次方程的一个根为0,另一个根在1到2之间,可设两个根分别为0和,即可得此一元二次方程是:,继而求得答案【详解】解:一元二次方程的一个根
17、为0,另一个根在1到2之间,设两个根分别为0和,此一元二次方程是:,二次函数关系式为:,故答案为【考点】此题考查了一元二次方程根与系数的关系以及二次函数与一元二次方程的关系此题难度适中,注意掌握二次函数与一元二次方程的关系是关键四、解答题1、(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2),最大利润为1750元【解析】【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元,根据某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列方程计算即可;(2)根据题意当时,每天可售100盒,猪肉粽每盒售x元时,每天可售盒,列出二次函数关系式,根据二次函数的性质计算最大值即可【详解】解
18、:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元则解得:,经检验是方程的解猪肉粽每盒进价40元,豆沙粽每盒进价30元答:猪肉粽每盒进价40元,豆沙粽每盒进价30元(2)由题意得,当时,每天可售100盒当猪肉粽每盒售x元时,每天可售盒每盒的利润为(),配方得:当时,y取最大值为1750元,最大利润为1750元答:y关于x的函数解析式为,且最大利润为1750元【点睛】本题主要考查分式方程的实际应用以及二次函数的实际应用,根据题意列出相应的函数解析式是解决本题的关键2、(1);(2)当售价为70元时,商家所获利润最大,最大利润是4500元【解析】【分析】(1)利用待定系数法分段求解函数解析式即可;(
19、2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1)当时,设,将和代入,可得,解得,即;当时,设,将和代入,可得,解得,即;(2)当时,销售利润,当时,销售利润有最大值,为4000元;当时,销售利润,该二次函数开口向上,对称轴为,当时位于对称轴右侧,当时,销售利润有最大值,为4500元;,当售价为70元时,商家所获利润最大,最大利润是4500元【点睛】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键3、当t为2或4时,QAP的面积等于8 cm2【解析】【分析】当运动时间为t s时,AP2t c
20、m,AQ(6t)cm,利用三角形的面积计算公式,结合QAP的面积等于8cm2,即可得出关于t的一元二次方程,解之即可得出t的值【详解】解:当运动时间为t s时,AP2t cm,AQ(6t)cm,依题意得2t(6t)8,整理得t26t80,解得t12,t24,当t为2或4时,QAP的面积等于8 cm2【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键4、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可(2)分两种情形:如图中,由题意点在上运动的时间与点在上运动的时间相等,即当时
21、,当时,当时,分别构建方程求解即可如图中,作于首先证明,根据构建方程即可解决问题 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:(1)如图中,当时,点与点都在上运动,此时两平行线截平行四边形的面积为如图中,当时,点在上运动,点仍在上运动则,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动则,此时两平行线截平行四边形的面积为故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,当t=8时,S最大,代入可得S=;(2)如图中, 线 封 密 内 号学级年名姓 线 封 密 外 由题意点在上运动的时间与点在上运动的时间相等,当时
22、,则有,解得,当时,则有,解得,当时,则有,解得如图中,作于在RtCHR中,四边形是平行四边形,四边形是矩形,当时,则有,解得,综上所述,满足条件的m的值为或或或【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题5、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2), 线 封 密 内 号学级年名姓 线 封 密 外 ,【点睛】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有