ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:189.63KB ,
资源ID:706283      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-706283-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年最新京改版八年级数学上册期中综合复习试题 卷(Ⅲ)(解析卷).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年最新京改版八年级数学上册期中综合复习试题 卷(Ⅲ)(解析卷).docx

1、京改版八年级数学上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法中,正确的是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正实数包括正有理数和正无理数D实数

2、可以分为正实数和负实数两类2、下列判断正确的是A带根号的式子一定是二次根式B一定是二次根式C一定是二次根式D二次根式的值必定是无理数3、下列说法正确的有()无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一定是无理数;不带根号的数一定是有理数ABCD4、下列式子:,其中分式有()A1个B2个C3个D4个5、按如图所示的运算程序,能使输出y值为1的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列实数中的无理数是()ABCD2、下列二次根式中,最简二次根式是()ABCD3、下列根式中,能再化简的二次根式是()ABCD4、下列结论不正确的是()A64的立方根是B没有立方根

3、C立方根等于本身的数是0D= 5、下列二次根式中,取值范围不是的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算:_2、对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为_3、比较大小:_4、+_5、7是_的算术平方根四、解答题(5小题,每小题8分,共计40分)1、已知,求的值2、计算(1)(2)3、求下列各式的值:(1);(2)4、如果解关于的方程会产生增根,求的值.5、已知,求实数a,b的平方和的倒数-参考答案-一、单选题1、C【解析】【分析】根据实数的概念即可判断【详解】解:(A)无理

4、数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型2、C【解析】【分析】直接利用二次根式的定义分析得出答案【详解】解:A、带根号的式子不一定是二次根式,故此选项错误;B、,a0时,一定是二次根式,故此选项错误;C、一定是二次根式,故此选项正确;D、二次根式的值不一定是无理数,故此选项错误;故选C【考点】此题主要考查了二次根式的定义,正确把握二次根式的性质是解题关键3、A【解析】【分析】根据无理数是无限不循环小数进行判断即可

5、【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确;不带根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数4、B【解析】【分析】根据分母中含有字母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键5、D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足mn,则y=2m+1=3; B选项不满

6、足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足mn,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.二、多选题1、BC【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项【详解】解:A,是有理数,不符合题意;B、,是无理数,符合题意;C、,是无理数,符合题意;D、,是有理数,不符合题意;故选BC【考点】此题主要考查了无理数的定义,其中初中范围内学

7、习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数2、CD【解析】【分析】根据最简二次根式的定义:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,这个根式叫做最简二次根式,据此判断即可【详解】解:A、,不是最简二次根式,不符合题意;B、不是最简二次根式,不符合题意;C、是最简二次根式,符合题意;D、是最简二次根式,符合题意;故选:CD【考点】本题考查了最简二次根式,熟知最简二次根式的定义是解本题的关键3、BCD【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则

8、就不是【详解】解:A、该二次根式符合最简二次根式的定义,故本选项不符合题意;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项符合题意;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项符合题意;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项符合题意;故选BCD【考点】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式4、ABC【解析】【分析】根据立方根的定义解答即可【详解】解:A、64的立方根是4,原说法错误,故本

9、选项符合题意;B、有立方根,是,原说法错误,故本选项符合题意;C、立方根等于它本身的数是0、1、-1,原说法错误,故本选项符合题意;D、,故选项D不符合题意,故选ABC【考点】本题考查了立方根解题的关键是掌握立方根的定义的运用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根5、ABD【解析】【分析】根据二次根式有意义的条件:被开方数要大于等于0,分式有意义的条件:分母不为0,分别求出每个选项的x的取值范围,即可得到答案【详解】解:A、有意义,3-x0,即x3,故本选项符合题意;B、有意义,2x+60,即x-3,故本选项符合题意;C、有意义,2x-60,即x3,故本选项

10、不符合题意;D、有意义,x-30,即x3,故本选项符合题意故选ABD【考点】本题主要考查了二次根式和分式有意义的条件,解题的关键在于能够熟练掌握二次根式有意义的条件三、填空题1、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计算是解题关键2、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2(x+1)(x2)=6,整理得,3x+3=6,解得,x=1,故答案为1【考点】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是

11、解题的关键3、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则4、7【解析】【分析】本题涉及平方、三次根式化简2个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:(3)2+927故答案为7【考点】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方、三次根式等考点的运算5、49【解析】【分析】根据算术平方根的定义即可解答.【详解】解:因为=7,所以7是49的算术平方根.故答案为:49【考点】本题

12、主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.四、解答题1、-4【解析】【分析】根据已知求出xy=-2,再将所求式子变形为,代入计算即可【详解】解:,【考点】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用2、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法【详解】解:(1)=;(2)=0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则3、(1);(2)0【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后

13、再加减即可得到结果【详解】(1);(2)【考点】本题考查立方根,熟练掌握立方根的性质是解决本题的关键4、k=2【解析】【分析】首先根据分式方程的解法求出方程的解,然后根据增根求出k的值【详解】两边同时乘以(x2)可得:x=2(x2)+k, 解得:x=4k,方程有增根,x=2, 即4k=2,解得:k=2【考点】本题主要考查的是分式方程有增根的情况,属于基础题型解决这种问题时,首先我们将k看作已知数,求出方程的解,然后根据解为增根得出答案5、【解析】【分析】根据非负数的性质和分式的性质,可得a2-16=0,,a4,求出a,b,然后再求a,b的平方和的倒数即可.【详解】解:根据题意得:a2-16=0,a4,所以 a4,b8 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1