1、京改版八年级数学上册期中定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果是()ABC1D2、某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设
2、原计划每天挖米,那么下列方程正确的是()ABCD3、若一个正数的两个平方根分别为2a与3a6,则这个正数为()A2B4C6D364、下列各数中,与2的积为有理数的是()A2B3CD5、关于x的分式方程30有解,则实数m应满足的条件是()Am2Bm2Cm2Dm2二、多选题(5小题,每小题4分,共计20分)1、下列关于的方程,不是分式方程的是()ABCD2、下面关于无理数的说法正确的是()A无理数就是开方开不尽的数B无理数是无限不循环小数C无理数包括正无理数、零、负无理数D无理数都可以用数轴上的点来表示3、下列运算错误的是()A(2xy1)36x3y3BC5a3D(x)7x2x54、下列分式变形不
3、正确的是()ABCD5、下列语句正确的是()A数轴上的点仅能表示整数B数轴是一条直线C数轴上的一个点只能表示一个数D数轴上找不到既表示正数又表示负数的点第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、分式的值比分式的值大3,则x为_2、把分式化为最简分式为_3、已知,则_,_4、观察下面的变化规律:,根据上面的规律计算:_5、观察下列各式:,请利用你所发现的规律,计算+,其结果为_四、解答题(5小题,每小题8分,共计40分)1、计算:(1)(2)2、现有一块长为、宽为的木板,能否在这块木板上截出两个面积是和的正方形木板?3、计算:(1);(2)4、计算:(1)(3)2(
4、3)0 (2)(2a)3b3(6a3b2)5、已知关于x的方程有增根,求m的值-参考答案-一、单选题1、C【解析】【分析】根据同分母分式的加法法则,即可求解【详解】解:原式=,故选C【考点】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键2、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系
5、,再列出方程3、D【解析】【分析】根据平方根的定义可得一个关于的一元一次方程,解方程求出的值,再计算有理数的乘方即可得【详解】解:由题意得:,解得,则这个正数为,故选:D【考点】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键4、D【解析】【分析】把A、B、C、D均与2相乘即可【详解】解:A、22=4为无理数,故不能;B. 36C. 2D. =6为有理数故选D【考点】本题考查二次根式乘法、积的算术平方根等概念,熟练掌握概念是解答问题的关键5、B【解析】【分析】解分式方程得:即,由题意可知,即可得到.【详解】解:方程两边同时乘以得:,分式方程有解,故选B.【考点】本题主要考查
6、了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.二、多选题1、ABC【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断【详解】解:A、分母中不含未知数,不是分式方程,符合题意;B、分母中不含未知数,不是分式方程,符合题意;C、分母中不含未知数,不是分式方程,符合题意;D、分母中含未知数,是分式方程,不符合题意;故选:ABC【考点】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)2、BD【解析】【分析】根据无理数的定义进行判断即可;【详解】解:A、开方开不尽的
7、数是无理数,无理数不一定开方开不尽的数,本选项说法错误,B、无理数是无限不循环小数,故本选项说法正确,C、无理数包括正无理数、负无理数,本选项说法错误,D、无理数都可以用数轴上的点来表示故本选项说法正确;故选:BD【考点】本题主要考查无理数定义,熟练掌握无理数的概念是解答的关键,此题是基础题,需要同学们牢固掌握3、AB【解析】【分析】根据负整数指数幂,同底数幂的除法和含乘方的计算法则进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选AB【考点】本题主要考查了负整数指数幂,同底数幂的除法和含乘方的计算,解题的关键在
8、于能够熟练掌握相关计算法则4、ABD【解析】【分析】根据分式的基本性质以及分式有意义的条件进行判断即可【详解】解:A 、,当时,等式右边无意义,变形不正确,符合题意;B、,当时,等式右边无意义,变形不正确,符合题意;C、,变形正确,不符合题意;D、,变形错误,符合题意;故答案为:ABD【考点】本题考查了分式的基本性质以及分式有意义的条件,熟知分式的基本性质是解本题的关键5、BC【解析】【分析】根据数轴上的点与实数一一对应,以及数轴的意义逐一分析可得答案【详解】解:A、数轴上的点与实数一一对应,故原来的说法错误;B、数轴是一条直线的说法正确;C、数轴上的点与实数一一对应,故原来的说法正确;D、数
9、轴上既不表示正数,又不表示负数的点是0,故原来的说法错误;故选:BC【考点】本题考查了数轴,注意数轴上的点与实数一一对应三、填空题1、1【解析】【分析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可【详解】根据题意得:-=3,方程两边都乘以x-2得:-(3-x)-1=3(x-2),解得:x=1,检验:把x=1代入x-20,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大3【考点】本题考查了解分式方程,能求出分式方程的解是解此题的关键2、【解析】【分析】根据分式的性质,进行约分即可,最简分式定义,一个分式的分子与分母没有非零次的公因式或公因数时叫最简分式【详解】故答案为
10、:【考点】本题考查了最简分式,掌握分式的约分,因式分解是解题的关键3、 12 【解析】【分析】利用完全平方公式和平方差公式计算求值即可;【详解】解:由题意得:,故答案为:12,;【考点】本题考查了代数式求值,实数的混合运算,掌握乘法公式是解题关键4、【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题【详解】由题干信息可抽象出一般规律:(均为奇数,且)故故答案:【考点】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解5、【解析】【分析】直接根据已知数据变化规律进而将原式变形求出答案【详解】由题意可得:+=+1+
11、1+1+=9+(1+)=9+=故答案为【考点】:此题主要考查了数字变化规律,正确将原式变形是解题关键四、解答题1、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算2、能截出两个面积是和的正方形木板.【解析】【分析】根据正方形的面积可以分别求得两个正方形的边长是和,显然只需比较两个正方形的边长的和与7.5的大小即可【详解】两个面积是和的正方形木板的边长是和,;,;答:能够在
12、这块木板上截出两个分别是8dm2和18dm2的正方形木板【考点】此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键3、 (1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2)先化简括号内二次根式再合并,再利用二次根式乘法计算即可(1)解: ;(2)解:【考点】本题考查了二次根式的混合运算,掌握二次根式的性质是解本题的关键4、(1)10;(2)b【解析】【分析】(1)直接利用零指数幂的性质化简得出答案;(2)直接利用积的乘方运算法则化简,再利用单项式除单项式运算法则计算得出答案【详解】解:(1)(-3)2+(+3)0=9+1=10;(2)(-2a)3b3(6a3b2)=-8a3b36a3b2=b【考点】此题主要考查了零指数幂的性质以及积的乘方运算、单项式除单项式运算,正确掌握相关运算法则是解题关键5、m3或5时【解析】【分析】根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,那么最简公分母x(x1)0,所以增根是x0或1,把增根代入化为整式方程的方程即可求出m的值【详解】解:方程两边都乘x(x1),得3(x1)6xxm,原方程有增根,最简公分母x(x1)0,解得x0或1,当x0时,m3;当x1时,m5.故当m3或5时,原方程有增根【考点】本题考查的是分式方程,熟练掌握分式方程是解题的关键.