1、京改版八年级数学上册期中专项攻克试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知,a介于两个连续自然数之间,则下列结论正确的是()ABCD2、已知、为实数,且+44b,则的值是()ABC2D2
2、3、分式方程的解是()A0B2C0或2D无解4、若是二元一次方程组的解,则x2y的算术平方根为()A3B3C D 5、某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列关于的方程,不是分式方程的是()ABCD2、下列运算中,正确的是()ABCD3、下列计算不正确的是()A(1)01BCD用科学记数法表示0.00001081.081054、如果,那么下列各式中正确的是()ABCD5、下列说法正确的是()ABC2的平方根是D第卷(非选择题 65分)三、填空题(5小
3、题,每小题5分,共计25分)1、已知,则_,_2、与 最接近的自然数是 _3、写出一个比大且比小的整数_4、 _, _5、若一个数的立方根等于这个数的算术平方根,则这个数是_四、解答题(5小题,每小题8分,共计40分)1、计算:(1)(2)2、化简:(1);(2);(3);(4)3、观察下列等式,探究其中的规律:+1,+,+,+,(1)按以上规律写出第个等式:_;(2)猜想并写出第n个等式:_;(3)请证明猜想的正确性4、(1)约分:(2)化简:(3)先化简,再求值:,其中5、已知a+b+c=0,求:的值-参考答案-一、单选题1、C【解析】【分析】先估算出的范围,即可得出答案【详解】解:,在3
4、和4之间,即故选:C【考点】本题考查了估算无理数的大小能估算出的范围是解题的关键2、C【解析】【分析】已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值【详解】已知等式整理得:0,a,b2,即ab1,则原式2,故选:C【考点】本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键3、D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选:D【考点】
5、本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验4、C【解析】【分析】将代入二元一次方程组中解出和的值,再计算的算术平方根即可【详解】解:将代入二元一次方程中,得到:,得: 所有方程组的解是: 的算术平方根为,故选:C【考点】本题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法5、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出
6、分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程二、多选题1、ABC【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断【详解】解:A、分母中不含未知数,不是分式方程,符合题意;B、分母中不含未知数,不是分式方程,符合题意;C、分母中不含未知数,不是分式方程,符合题意;D、分母中含未知数,是分式方程,不符合题意;故选:ABC【考点】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)2、CD【解析】【分析】根据合并同类项,完全平方公式,分式的乘除及分式的加减运算进行计算,再判断即
7、可作答【详解】不能再合并同类项了,A选项错误,不符合题意;,B选项错误,不符合题意;,C选项正确,符合题意;,D选项正确,符合题意;故选:CD【考点】本题考查了合并同类项,完全平方公式,分式的乘除及分式的加减运算,熟练掌握运算法则是解题的关键3、ABCD【解析】【分析】根据负整数指数幂和科学计算法的计算方法进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则4、BC【解析】【分析】先判断a,b的符号,然后根据二
8、次根式的性质逐项分析即可【详解】解:,a0,b0)5、ABC【解析】【分析】直接根据立方根、二次根式的性质以及乘法运算法则进行判断即可【详解】解:A. ,故选项A正确,符合题意;B. ,故选项B正确,符合题意;C. 2的平方根是,故选项C正确,符合题意;D. ,故选项D错误,不符合题意;故选:ABC【考点】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0同时还考查了二次根式的性质三、填空题1、 12 【解析】【分析】利用完全平方公式和平方差公式计算求值即可;【详解】
9、解:由题意得:,故答案为:12,;【考点】本题考查了代数式求值,实数的混合运算,掌握乘法公式是解题关键2、2【解析】【分析】先根据得到,进而得到,因为14更接近16,所以最接近的自然数是2【详解】解:,可得,14接近16,更靠近4,故最接近的自然数是2故答案为:2【考点】本题考查无理数的估算,找到无理数相邻的两个整数是解题的关键3、2(或3)【解析】【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案【详解】12,34,比大且比小的整数是2或3故答案为:2(或3)【考点】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键4、 ,
10、3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到结果【详解】解:;,故答案为:-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键5、0或1【解析】【分析】设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a【详解】解:设这个数为a,由题意知,=(a0),解得:a=1或0,故答案为:1或0【考点】本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a0四、解答题1、(1)9;(2)-【解析】【分析】(1)先将二次根式化简,然后按照运算法则计算即可;(2)先将二次根式化简,然后按照运算法则计算即可;【详解】
11、解:(1)(2)【考点】本题考查了实数的运算,涉及了绝对值及二次根式的化简,掌握各部分的运算法则是关键2、(1)27;(2);(3);(4)【解析】【分析】根据积与商的算术平方根的性质将原式化为最简二次根式即可【详解】解:(1);(2);(3);(4)【考点】本题主要考查了最简二次根式,熟知定义以及二次根式的性质是解题的关键3、(1)+;(2)+;(3)证明见解析【解析】【分析】(1)仔细观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,据此进一步整理即可得出答案;(2)根据(1)中的规律直接进行归纳总结即可;(3)利用分式的运算法则进行计
12、算验证即可.【详解】(1)观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,第个等式为:+,故答案为:+;(2)根据(1)中规律总结归纳可得:+,故答案为:+;(3)证明:对等式左边进行运算可得:+=,等式右边,左边右边,+成立【考点】本题主要考查了分式运算中数字的变化规律,根据题意正确找出相应的规律是解题关键.4、(1);(2);(3)【解析】【分析】(1)根据分式的基本性质进行约分即可;(2)根据同分母分式的减法计算法则先合并,再利用分式的基本性质化简即可;(3)先根据异分母分式加减计算法则合并,然后约分,最后代值计算即可【详解】解:(1)原式;(2)原式;(3)原式,设,原式【考点】本题主要考查了分式的约分,分式的加减计算,分式的化简求值,熟知相关公式和计算法则是解题的关键5、-3【解析】【分析】先将该式进行化简,再由abc0可得a(bc),b(ac),c(ab),再代入化简后的式子中即可得出答案.【详解】,a(bc),b(ac),c(ab),原式,1(1)(1),3.故答案为3.【考点】本题考查了分式的化简求值,熟练掌握该知识点是本题解题的关键.