ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:230.50KB ,
资源ID:7043      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-7043-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文([原创] 预测2011届高考数学:18向量与圆锥曲线(一).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

[原创] 预测2011届高考数学:18向量与圆锥曲线(一).doc

1、第十八讲 向量与圆锥曲线(一)高考在考什么【考题回放】1(重庆)已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为 ( )(A)(B)(C)(D)2.(全国)设分别是双曲线的左、右焦点若点在双曲线上,且,则( )A B C D3设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若且,则点P的轨迹方程是( )A BC D4已知两点M(2,0)、N(2,0),点P为坐标平面内的动点,满足,则动点P(x,y)的轨迹方程为( )(A)(B)(C)(D)5若曲线y2|x|1与直线ykxb没有公共点,则k、

2、b分别应满足的条件是 高考要考什么【热点透析】知识要点:1直线与圆锥曲线的公共点的情况(1)没有公共点 方程组无解 (2)一个公共点 (3)两个公共点 2连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常用的弦长公式:3以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题主要题型:1三点共线问题;2公共点个数问题;3弦长问题;4中点问题;5定比分点问题;6对称问题;7平行与垂直问题;8角的问题。近几年平面向量与解析几何交汇试题考查方向为(1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。(2)考查学生把向量作为工具的运

3、用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。特别提醒:D法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。突破重难点【例1】在平面直角坐标系O中,直线与抛物线y22x相交于A、B两点(1)求证:“如果直线l过点T(3,0),那么3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由解(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率不存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3,)、B(3,). =3;当直线l的钭率存在时,设直线l的方程为,其中,由得

4、 又 ,综上所述,命题“如果直线过点T(3,0),那么=3”是真命题;(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题.例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为:,而T(3,0)不在直线AB上;说明:由抛物线y2=2x上的点A (x1,y1)、B (x2,y2) 满足=3,可得y1y2=6,或y1y2=2,如果y1y2=6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线AB过点(1,0),而不过点(3,0).【例2】已知A,B为抛物线x2=2py(p0)上异于原点的两点,点C坐标为(0,2p

5、)(1)求证:A,B,C三点共线; (2)若()且试求点M的轨迹方程。(1)证明:设,由得,又,即A,B,C三点共线。(2)由(1)知直线AB过定点C,又由及()知OMAB,垂足为M,所以点M的轨迹为以OC为直径的圆,除去坐标原点。即点M的轨迹方程为x2+(y-p)2=p2(x0,y0)。【例3】椭圆的两个焦点F1、F2,点P在椭圆C上,且PF1F1F2,| PF1|=,| PF2|=.(I)求椭圆C的方程;(II)若直线l过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线l的方程。解法一:()因为点P在椭圆C上,所以,a=3.在RtPF1F2中,故椭圆的半

6、焦距c=,从而b2=a2c2=4, 所以椭圆C的方程为1.()设A,B的坐标分别为(x1,y1)、(x2,y2). 由圆的方程为(x+2)2+(y1)2=5,所以圆心M的坐标为(2,1). 从而可设直线l的方程为y=k(x+2)+1, 代入椭圆C的方程得 (4+9k2)x2+(36k2+18k)x+36k2+36k27=0.因为A,B关于点M对称. 所以 解得,所以直线l的方程为 即8x-9y+25=0. (经检验,符合题意)解法二:()同解法一.()已知圆的方程为(x+2)2+(y1)2=5,所以圆心M的坐标为(2,1). 设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1x2且

7、 由得 因为A、B关于点M对称,所以x1+ x2=4, y1+ y2=2,代入得,即直线l的斜率为,所以直线l的方程为y1(x+2),即8x9y+25=0.(经检验,所求直线方程符合题意.)【例4】已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由解:由条件知,设,解法一:(I)设,则,由得即 于是的中点坐标为当不与轴垂直时,即又因为两点在双曲线上,所以,两式相减得,即将代入上式,化简得当与轴垂直时,求得,也满足上述方程所以点的轨迹方程是(II)假设在轴上存在定点,使为常数当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以,于是因为是与无关的常数,所以,即,此时=当与轴垂直时,点的坐标可分别设为,此时故在轴上存在定点,使为常数解法二:(I)同解法一的(I)有当不与轴垂直时,设直线的方程是代入有则是上述方程的两个实根,所以 由得当时,由得,将其代入有整理得当时,点的坐标为,满足上述方程当与轴垂直时,求得,也满足上述方程故点的轨迹方程是(II)假设在轴上存在定点点,使为常数,当不与轴垂直时,由(I)有,以上同解法一的(II)本卷第6页(共6页)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3