ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:123.50KB ,
资源ID:704043      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-704043-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《高考调研》2016届高三理科数学一轮复习单元测试:第三章 导数及应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《高考调研》2016届高三理科数学一轮复习单元测试:第三章 导数及应用 WORD版含答案.doc

1、第三章 单元测试卷一、选择题(本大题共12小题,每小题5分,共60分每小题中只有一项符合题目要求)1若曲线yf(x)在点(x0,f(x0)处的切线方程为3xy10,则()Af(x0)0Bf(x0)0Cf(x0)0 Df(x0)不存在答案B2设曲线y在点(3,2)处的切线与直线axy10垂直,则实数a等于()A2 B.C D2答案D解析y1,y,曲线y在点(3,2)处的切线的斜率为ky|x3.由题意知axy10的斜率为k2,a2,故选D.3函数yxex的单调递增区间是()A1,) B(,1C1,) D(,1答案A解析令yex(1x)0,又ex0,1x0,x1,故选A.4若三次函数yax3x在R上

2、是减函数,则()Aa0 Ba1Ca2 Da答案A解析y3ax21,由y0,得3ax210.a0.5已知函数f(x)则f(x)dx()A. B1C2 D.答案D6若函数f(x)2xlnx,且f(a)0,则2aln2a()A1 B1Cln2 Dln2答案B解析f(x)2xln2,由f(a)2aln20,得2aln2,则a2aln21,即2aln2a1.7已知函数f(x)exmx1的图像为曲线C,若曲线C存在与直线yx垂直的切线,则实数m的取值范围是()Am2 Bm2Cm Dm答案B解析因为函数f(x)exmx1的图像为曲线C,若曲线C存在与直线yx垂直的切线,即说明exm2有解,mex2,则实数m

3、的取值范围是m2,故选B.8若函数f(x)x2ax在(,)上是增函数,则实数a的取值范围是()A1,0 B1,)C0,3 D3,)答案D解析由条件知f(x)2xa0在(,)上恒成立,即a2x在(,)上恒成立函数y2x在(,)上为减函数,ymax23.a3.故选D.9设三次函数f(x)的导函数为f(x),函数yxf(x)的图像的一部分如图所示,则()Af(x)的极大值为f(,极小值为f()Bf(x)的极大值为f(),极小值为f()Cf(x)的极大值为f(3),极小值为f(3)Df(x)的极大值为f(3),极小值为f(3)答案D解析由函数yxf(x)的图像可知,x(,3),f(x)0,f(x)单调

4、递增;x(3,),f(x)0,f(x)单调递减,选D.10若f(x),eaf(b) Bf(a)f(b)Cf(a)1答案A解析f(x),当xe时,f(x)f(b),故选A.11若a2,则函数f(x)x3ax21在区间(0,2)上恰好有()A0个零点 B1个零点C2个零点 D3个零点答案B解析f(x)x22ax,且a2,当x(0,2)时,f(x)0,f(2)4a0,f(x)在(0,2)上恰好有1个零点故选B.12.已知函数f(x)x3ax2bx(a,bR)的图像如图所示,它与x轴相切于原点,且x轴与函数图像所围成区域(图中阴影部分)的面积为,则a的值为()A1 B0C1 D2答案A解析方法一:因为

5、f(x)3x22axb,函数f(x)的图像与x轴相切于原点,所以f(0)0,即b0,所以f(x)x3ax2,令f(x)0,得x0或xa(a0)因为函数f(x)的图像与x轴所围成区域的面积为,所以(x3ax2)dx,所以(x4ax3),所以a1或a1(舍去),故选A.方法二:因为f(x)3x22axb,函数f(x)的图像与x轴相切于原点,所以f(0)0,即b0,所以f(x)x3ax2.若a0,则f(x)x3,与x轴只有一个交点(0,0),不符合所给的图像,排除B;若a1,则f(x)x3x2x2(x1),与x轴有两个交点(0,0),(1,0),不符合所给的图像,排除C;若a2,则所围成的面积为 (

6、x32x2)dx(x4x3) ,排除D.故选A.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13已知曲线yx32与曲线y4x21在xx0处的切线互相垂直,则x0的值为_答案解析两曲线在x0处切线互相垂直,(x)(8x0)1.x0.14已知f(x)x(1|x|),则f(1)f(1)_.答案9解析当x0时,f(x)x2x,f(x)2x1,则f(1)3.当x0,此时f(x)在x0,上单调递增,最大值f()a,解得a1,符合题意,故a1.f(x)xsinx在x(0,)上的零点个数即为函数ysinx,y的图像在x(0,)上的交点个数又x时,sin10,所以两图像在x(0,)内

7、有2个交点,即f(x)xsinx在x(0,)上的零点个数是2.16若对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)x2f(x2)x1f(x2)x2f(x1),则称函数f(x)为“H函数”给出下列函数:yx3x1; y3x2(sinxcosx);yex1; f(x)以上函数是“H函数”的所有序号为_答案解析因为x1f(x1)x2f(x2)x1f(x2)x2f(x1),即(x1x2)f(x1)f(x2)0,所以函数f(x)在R上是增函数由y3x210,得x0恒成立,所以为“H函数”;由yex0恒成立,所以为“H函数”;由于为偶函数,所以不可能在R上是增函数,所以不

8、是“H函数”综上可知,是“H函数”的有.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17(本题满分10分)已知函数f(x)ax2blnx在x1处有极值.(1)求a,b的值;(2)判断函数yf(x)的单调性并求出单调区间答案(1)a,b1(2)单调递减区间是(0,1),单调递增区间是(1,)解析(1)因为函数f(x)ax2blnx,所以f(x)2ax.又函数f(x)在x1处有极值,所以即解得(2)由(1)可知f(x)x2lnx,其定义域是(0,),且f(x)x.当x变化时,f(x),f(x)的变化情况如下表:x(0,1)1(1,)f(x)0f(x)极小值所以函数

9、yf(x)的单调递减区间是(0,1),单调递增区间是(1,)18(本题满分12分)已知函数f(x)x2mlnx.(1)若函数f(x)在(,)上是单调递增的,求实数m的取值范围;(2)当m2时,求函数f(x)在1,e上的最大值和最小值答案(1)m(2)最大值,最小值1ln2解析(1)若函数f(x)在(,)上是增函数,则f(x)0在(,)上恒成立而f(x)x,即mx2在(,)上恒成立,即m.(2)当m2时,f(x)x.令f(x)0,得x.当x1,)时,f(x)0,故x是函数f(x)在1,e上唯一的极小值点,故f(x)minf()1ln2.又f(1),f(e)e22,故f(x)max.19(本题满分

10、12分)(2014江西理)已知函数f(x)(x2bxb)(bR)(1)当b4时,求f(x)的极值;(2)若f(x)在区间上单调递增,求实数b的取值范围答案(1)极小值为0,极大值为4(2)(,解析(1)当b4时,f(x),由f(x)0,得x2或x0.当x(,2)时,f(x)0,f(x)单调递减;当x(2,0)时,f(x)0,f(x)单调递增;当x时,f(x)0,f(x)单调递减,故f(x)当x2时取得极小值f(2)0,在当x0时取得极大值,f(0)4.(2)f(x),因为当x时,0,依题意当x时,有5x(3b2)0,从而(3b2)0.所以实数b的取值范围为.20(本题满分12分)已知函数f(x

11、)lnx,g(x)(xa)2(lnxa)2.(1)求函数f(x)在A(1,0)处的切线方程;(2)若g(x)在1,)上单调递增,求实数a的取值范围;(3)证明:g(x).答案(1)yx1(2)a2(3)略解析(1)因为f(x),所以f(1)1.故切线方程为yx1.(2)g(x)2(xa),令F(x)xa,则yF(x)在1,)上单调递增F(x),则当x1时,x2lnxa10恒成立,即当x1时,ax2lnx1恒成立令G(x)x2lnx1,则当x1时,G(x)x2m,f(x1)f(x2)a(x1x2)恒成立,求实数a的取值范围;(2)当x0时,求证:ln(x1)2x2(9x5)答案(1)(,0(2)

12、略解析(1)函数f(x)的定义域为(m,)f(x)4x,故函数f(x)在点P(0,f(0)处的切线斜率kf(0)1,即1,解得m1.故f(x)ln(x1)2x2.由f(x1)f(x2)a(x1x2),得f(x1)ax1f(x2)ax2.故由题意可得g(x)f(x)ax在(1,)上为增函数故g(x)f(x)a0在(1,)上恒成立,即4xa0在(1,)上恒成立故a4x在(1,)上恒成立设p(x)4x4(x1)4,因为x10,所以4(x1)4240.所以实数a的取值范围是(,0(2)设h(x)ln(x1)2x2(9x5)则h(x)4x,令h(x)0,解得x或x1.故当x(0,1)时,h(x)0,函数

13、h(x)单调递增所以函数h(x)在(0,)上的最小值为h(1)ln(11)212(915)ln20.故h(x)0,即ln(x1)2x2(9x5)0,也就是ln(x1)2x2(9x5)22(本题满分12分)设函数f(x)lnxax,g(x)exax,其中a为实数(1)若f(x)在(1,)上是单调减函数,且g(x)在(1,)上有最小值,求实数a的取值范围;(2)若g(x)在(1,)上是单调增函数,试求f(x)的零点个数,并证明你的结论答案(1)ae(2)a或a0时,f(x)有1个零点;0ae,则g(x)exax在(1,lna)上是单调减函数,在(lna,)上是单调增函数,g(x)ming(lna),满足题意故实数a的取值范围为ae.(2)g(x)exa0在(1,)上恒成立,则aex,故a,f(x)a(x0)若00得单调递增区间为(0,);令f(x)0得单调递减区间为(,)当x0时,f(x);当x时,f(x);当x时,f()lna10,当且仅当a时取等号故当a时,f(x)有1个零点;当0a时,f(x)有2个零点若a0,则f(x)lnx,易知f(x)有1个零点若a0在(0,)上恒成立,即f(x)lnxax在(0,)上是单调增函数,当x0时,f(x);当x时,f(x).此时,f(x)有1个零点综上所述,当a或a0时,f(x)有1个零点;当0a时,f(x)有2个零点

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3