ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:119.85KB ,
资源ID:70263      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-70263-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年八年级数学上册 难点突破24 二元一次方程组解法-加减法试题 北师大版.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年八年级数学上册 难点突破24 二元一次方程组解法-加减法试题 北师大版.docx

1、专题24二元一次方程组解法-加减法【知识点总结】一、加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一

2、个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解二、选择适当的方法解二元一次方程组 解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选法,快速消元【精典例题】一、加减法解二元一次方程组1、直接加减:解方程组【思路点拨】注意到方程组中y的系数互为相反数,可将两个方程直接相加即可消元【答案与解析】解:+,得6x18,解得x3将x3代入,得433y11,解得所以原方程组的解为【总结升华】如果两个方程中某个未知数的系数的绝对值相等,可将两个方程直接相加或相减,即可消去这个未知数2、先变系数后加减:【思路

3、点拨】注意到方程组中x的系数成2倍关系,可将方程的两边同乘2,使两个方程中x的系数相等,然后再相减消元【答案与解析】解:2,得13y65解得y5将y5代入,得2x5521,解得x2所以原方程组的解为【总结升华】如果两个方程中未知数的系数的绝对值不相等,但某一未知数的系数成整数倍,可将一个方程的系数进行变化,使这个未知数的系数的绝对值相等3、建立新方程组后巧加减:解方程组【思路点拨】注意到两个方程中两个未知数的系数的和相等、差互为相反数,所以可将两个方程分别相加、相减,从而得到一个较简单的二元一次方程组【答案与解析】解:+,得7x+7y7,整理得x+y1 ,得3x3y15,整理得xy5 解由、组

4、成的方程组得原方程组的解为【总结升华】解方程组时,我们应根据方程组中未知数的系数的特点,通过将两个方程相加或相减,把原方程组转化为更简单的方程组来解4、先化简再加减:解方程组【思路点拨】方程组中未知数的系数是分数或小数,一般要先化成整数后再消元【答案与解析】解:10,6,得3,得11y33,解得y3将y3代入,解得x4所以原方程组的解为【总结升华】当二元一次方程组的形式比较复杂时,通常是先通过变形(如去分母、去括号等),将它化为形式简单的方程组,再消元求解5、用加减消元法解方程组【思路点拨】先将原方程写成方程组的形式后,再求解.【答案与解析】解:此式可化为:由(1):3x+4y=18 (1)由

5、(2):6x+5y=27 (2)(1)2:6x+8y=36 (3)(3)(2):3y=9 y=3代入(1):3x+12=18 3x=6 x=2 【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元.6、已知关于x、y的方程组的解为,求关于x、y的方程组的解【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把xy,x+y看作一个整体,则两个方程同解【答案与解析】 解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(xy)与(x+y)分别看成一个整体当作未知数,可得 解得:【总结升华】本例采用了类比的

6、方法,若把其中的x+y和xy分别看作整体,则第二个方程组与第一个方程组相同,即x+y1,xy3二、用适当方法解二元一次方程组7、(1) (2)【思路点拨】观察方程特点选择方法:(1)代入消元法;(2)先化简再加减或代入消元法【答案与解析】解:(1)由得 将代入得解得: 将代入得原方程组的解为:(2)原方程组可化为:+,得,即 将代入得,代入得 原方程组的解为:【总结升华】方程组的解法不唯一,只是有的计算简便,有的繁琐8、解方程组【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】解:设,则原方程组可化为 解得即 ,所以 解得所以原方程组的解为【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.9、试求方程组的解【答案与解析】解:,整理得 ,13y0,即y13,当时,可化为,解得;当时,可化为,无解.将代入,得,解得.综上可得,原方程组的解为: 或.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.10、已知方程组与同解,求a、b.【答案】解:由,解得,将代入,得, 解得.答:的值为,的值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3