1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线
2、A20B27C35D442、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角3、下列长度的3根小木棒不能搭成三角形的是()A2cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm4、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD5、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A1B2C3D4二、多选题(5小题,每小题4分,共计20分)1、如图,为了估计
3、池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27米D18米2、如图, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE下列说法中正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 ACEBF;BABD和ACD面积相等;CBFCE;DBDFCDE3、在ABC和ABC中,已知A=A,AB=AB,下面判断中正确的是()A若添加条件AC=AC,则ABCABCB若添加条件BC=BC,则ABCABCC若添加条件B=B,则ABCABCD若添加条件 C=C,则ABCABC4、下列每组中的两个图形,不是全等图形的是()ABCD5、如图
4、,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBAC=BDCA=DDE=F第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知ABC,A=80,BF平分外角CBD,CF平分外角BCE,BG平分CBF,CG平分外角BCF,则G=_2、如图,点为上一点,、的角平分线交于点,已知,则_度3、如图,中,D为延长线上一点,且,与的延长线交于点P,若,则_ 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,在矩形ABCD中,AB8cm,AD12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/
5、s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动当v为_时,ABP与PCQ全等5、如图,在四边形中,于,则的长为_四、解答题(5小题,每小题8分,共计40分)1、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM2、如图,在ABC中,A=DBC=36,C=72求1,2的度数3、如图,在中,点在的延长线上,于点,若,求证:4、如图,已知ABC中,AB=AC,A=108,BD平分ABC求证:BC=AB+CD 5、如图,G 为 BC 的中点,且 DGBC,DEAB 于 E,D
6、FAC 于 F, BECF(1)求证:AD 是BAC 的平分线;(2)如果 AB8,AC6,求 AE 的长 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】根据多边形的内角和公式(n-2)180与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成【详解】解:设这个多边形是n边形,根据题意得,(n-2)180=4360,解得n=1010(10-3)2=35(条)故选:C【考点】本题考查了多边形的内角和与外角和、方程的思想关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式2、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解
7、:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.3、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三角形,符合题意;C,能构成三角形,不合题意;D,能构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数4、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分 线 封 密 内 号学级年名姓 线 封 密 外 ,设可以假设,设,则故答
8、案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键5、A【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键二、多选题1、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+
9、11, 线 封 密 内 号学级年名姓 线 封 密 外 4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键2、ABCD【解析】【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案【详解】是的中线, ,又 , , ,故D选项正确 , 故A选项正确; BFCE;故C选项正确是的中线, 和等底等高, 和面积相等,故B选项正确;故选:ABCD【考点】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL3、ACD【
10、解析】【分析】已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等【详解】解:A选项,添加条件AC=AC,可利用SAS判定则ABCABC,选项正确,符合题意;B选项,添加条件BC=BC,不能判定两个三角形全等,选项不正确;C选项,添加条件B=B,可利用ASA判定ABCABC,选项正确,符合题意;D选项,添加条件C=C,可利用AAS判定ABCABC, 选项正确,符合题意;故选ACD【考点】本题主要考查全等三角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理4、ABD【解析】
11、【分析】根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案【详解】解:A、大小不同,不能重合,不是全等图形,符合题意;B、大小不同,不能重合,不是全等图形,符合题意;C、大小相同,形状相同,是全等图形,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D、正五边形和正六边形不是全等图形,符合题意;故选:ABD【考点】本题考查了全等图形的识别,熟知全等图形的定义是解本题的关键5、ABD【解析】【分析】由AEDF可得A=D,要判定AECDFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是E=F或者是AC
12、E=DBF,结合四个选项即可求解【详解】解:AEDF,A=D,A、AB=CD,AB+BC=CD+BC,即AC=DB,又AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;B、AC=BD,AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;C、A=D,AE=DF,不能推出AECDFB,故本选项不符合题意;D、E=F,AE=DF,A=D,根据ASA能推出AECDFB,故本选项符合题意;故选:ABD【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS三、填空题1
13、、115【解析】【分析】由三角形外角的性质即三角形的内角和定理可求解DBC+ECB=260,再利用角平分线的定义可求解FBC+FCB=130,即可得GBC+GCB=65,再利用三角形内角和定理可求解【详解】解:DBC=A+ACB,ECB=A+ABC,DBC+ECB=A+ACB+A+ABC,ACB+A+ABC=180,DBC+ECB=A+180=80+180=260,BF平分外角DBC,CF平分外角ECB,FBC=DBC,FCB=ECB,FBC+FCB=(DBC+ECB)=130,BG平分CBF,CG平分BCF,GBC=FBC,GCB=FCB,GBC+GCB=(FBC+FCB)=65, 线 封
14、密 内 号学级年名姓 线 封 密 外 G=180-(GBC-GCB)=180-65=115故答案为:115【考点】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解FBC+FCB=130是解题的关键2、【解析】【分析】设,根据角平分线的定义得到,根据外角的性质得到,由平行线的性质得到,于是得到方程,即可得到结论【详解】解:设,、的角平分线交于点,故答案为:【考点】本题考查了平行线的性质、角平分线的定义以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和正确识别图形并通过设未知数建立方程是解题关键3、【解析】【分析】作于,根据全等三角形性质得出CP=PM,DC=AM,
15、设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案【详解】解:作于,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,设,故答案为:【考点】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力4、2或【解析】【详解】可分两种情况:ABPPCQ得到BPCQ,ABPC,ABPQCP得到BACQ,PBPC,然后分别计算出t的值,进而得到v的值【解答】解:当BPCQ,ABPC时,ABPPCQ,AB8cm,PC8cm,BP1284(cm),2t4,解得:t2,CQBP4cm,v24,解得:v2;当BACQ,PBPC时,ABPQC
16、P,PBPC,BPPC6cm,2t6,解得:t3,CQAB8cm,v38,解得:v, 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,当v2或时,ABP与PQC全等,故答案为:2或【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键5、【解析】【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型四、
17、解答题1、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证【详解】, 线 封 密 内 号学级年名姓 线 封 密 外 AF是的平分线,E是AC的中点,在和中,【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键2、1=36,2=72【解析】【分析】在ABC和BDC中,根据三角形内角和定理,即可得出结论【详解】在ABC中,ABC=180AC=1803672=72,1=ABCDBC=7236=36;在BCD中,2=180DBC
18、C=1803672=72【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用3、证明见解析【解析】【分析】利用AAS证明,根据全等三角形的性质即可得到结论【详解】证明:,ADE=90,ACB=ADE,在和中 ,AE=AB,AC=AD,AE-AC=AB-AD,即EC=BD【考点】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识4、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明ABDEBD,得到DEB=BAD=108,进一步计算出DEC=CDE=72得到CD=CE即可证明【详解】 线 封 密 内 号学级年名姓 线 封 密 外 证明:在线段BC上
19、截取BE=BA,连接DE,如下图所示:BD平分ABC,ABD=EBD, 在ABD和EBD中: ,ABDEBD(SAS),DEB=BAD=108,DEC=180-108=72,又AB=AC,C=ABC=(180-108)2=36,CDE=180-C-DEC=180-36-72=72,DEC=CDE,CD=CE,BC=BE+CE=AB+CD【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法5、(1)见解析;(2)7.【解析】【分析】(1)因为G为BC的中点
20、,且DGBC,则DG是线段BC的垂直平分线,考虑连接DB、DC,利用线段的垂直平分线的性质,又因为DEAB,DFAC,可通过DE=DF说明AD是BAC的平分线;(2)先通过AED与ADF的全等关系,说明AE与AF的关系,利用线段的和差关系,通过线段的加减求出AE的长【详解】(1)连接BD、DC DGBC,G为BC的中点,BD=CD,DGBC,DEAB BED=CFD,在RtDBE和RtDFC中, DBEDFC DE=DF,BAD=FAD AD是BAC的平分线;(2)DE=DF,BAD=FAD,AD=AD AEDADF, 线 封 密 内 号学级年名姓 线 封 密 外 AE=AF AB=AE+BE,AC=AF-CF,AB+AC=AE+AF,AB=8,AC=6,8+6=2AE,AE=7【考点】本题考查了全等三角形的判定与性质、角平分线与线段垂直平分线的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及角平分线与线段垂直平分线的性质.
Copyright@ 2020-2024 m.ketangku.com网站版权所有