收藏 分享(赏)

2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx

上传人:a**** 文档编号:702331 上传时间:2025-12-13 格式:DOCX 页数:22 大小:461.20KB
下载 相关 举报
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第1页
第1页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第2页
第2页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第3页
第3页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第4页
第4页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第5页
第5页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第6页
第6页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第7页
第7页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第8页
第8页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第9页
第9页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第10页
第10页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第11页
第11页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第12页
第12页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第13页
第13页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第14页
第14页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第15页
第15页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第16页
第16页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第17页
第17页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第18页
第18页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第19页
第19页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第20页
第20页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第21页
第21页 / 共22页
2022年强化训练人教版九年级数学上册期末综合测评试题 (B)卷(解析卷).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合测评试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范

2、围是()ABC且D2、关于函数,下列说法:函数的最小值为1;函数图象的对称轴为直线x3;当x0时,y随x的增大而增大;当x0时,y随x的增大而减小,其中正确的有()个A1B2C3D43、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求2、B【解析】【分析】 线 封 密

3、内 号学级年名姓 线 封 密 外 根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性【详解】解:,该函数图象开口向上,有最小值1,故正确;函数图象的对称轴为直线,故错误;当x0时,y随x的增大而增大,故正确;当x3时,y随x的增大而减小,当3x0时,y随x的增大而增大,故错误故选:B【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质3、C【解析】【分析】根据二次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可【详解】解:由二次函数,可知:,其图象的开口向上,故此选项错误;其图象的对称轴为直线,故此选项错误;其最小值为1,

4、故此选项正确;当时,随的增大而减小,故此选项错误故选:【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识4、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x-1) 件标本,即可列出方程【详解】解:由题意可得,x(x-1)=182,故选B【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键5、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论【详解】A.此方程判别式 ,方程有两个相等的实数根,不符合题意; B.此方程判别式 方程没有实数根,不符合题意;C.

5、此方程判别式 ,方程没有实数根,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D .此方程判别式 ,方程有两个不相等的实数根,符合题意;故答案为: D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根二、多选题1、ABCD【解析】【分析】连接HB、HD,利用勾股定理可得,则根据三角形外心的定义可对四个选项进行判断【详解】解:如图,连接HB、HD,根据勾股定理可得:,点是的外心,点是的外心,点是的外心,点是的外心,ABCD都是正确的故选:ABCD【考点】本题考

6、查了三角形的外心和勾股定理的应用,熟练掌握三角形的外心到三角形的三个顶点的距离相等是解决本题的关键2、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果【详解】解:A、x2-x10,方程没有实数根,此选项符合题意;B、x2x10,方程没有实数根,此选项符合题意;C、(x-1)(x2)0,方程有实数根,此选项不符合题意;D、原式整理为:,方程没有实数根,此选项符合题意;故选:ABD【考点】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根3、BCD【解析】【分析】根据抛物线与轴有两

7、个交点,可知,即可判断A选项;根据时,即可判断B选项;根据对称轴,即可判断C选项;D根据抛物线的顶点坐标为,函数有最大即可判定D【详解】解:由图象可知,抛物线开口向下,对称轴在轴的右侧,与轴的交点在轴的负半轴, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线与轴有两个交点,即,故A错误;由图象可知,时,故B正确;抛物线的顶点坐标为,即,故C正确;抛物线的开口向下,顶点坐标为,(为任意实数),即时,方程有解故D正确故选BCD【考点】本题主要考查了二次函数的性质、二次函数图像等知识点,掌握二次函数的性质与解析式的关系是解答本题的关键4、AD【解析】【分析】利用方程根的定义去验证判断即可【详解

8、】,是方程的一个根,是方程的一个根,是方程的一个根,即时方程的一个根.是方程的一个根,当x=时,是方程的根故选:A,D【考点】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键5、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可【详解】解:A等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 B经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故

9、答案为:A、D【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质三、填空题1、【解析】【分析】先求得顶点A的坐标,然后根据题意得出B的横坐标,把横坐标代入抛物线,得出B点坐标,从而求得A、B间的距离,最后计算面积即可【详解】设AB交x轴于C抛物线线ya(x2)21(a0)的顶点为A,A(2,1),过点A作y轴的平行线交抛物线于点B,B的横坐标为2,OC=2把x=2代入得y=-3,B(2,-3),AB=1+3=4,故答案为:4【考点】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标是解题的关键2、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,

10、-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标【详解】x=-2,y=-3;x=0时,y=-3,抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点坐标为(-3,0), 线 封 密 内 号学级年名姓 线 封 密 外 抛物线与x轴的一个交点坐标为(1,0)故答案为(1,0)【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了二次函数的性质3、y3x22或y3x22

11、【解析】【分析】根据二次函数的图象特点即可分类求解【详解】二次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等4、1.25【解析】【分析】设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.【详解】设小路的宽度为,由题意和图示可知,小路的面积为,解一元二次方程,由,可得.【考点】本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.5、x

12、=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可【详解】当x2=0时,x=2,当x20时,4x=1,x=,故答案为:x=或x=2【考点】本题考查解一元二次方程,本题关键在于分情况讨论四、解答题1、(1),;(2)50元或80元;(3)商场销售该品牌玩具获利的最大利润是10560元【解析】【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价-进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论; 线 封 密 内 号学级年名姓 线 封 密 外 (3)根据销售单价不低于45元且商场要完成不少于

13、480件的销售任务求得45x52,根据二次函数的性质得到当45x52时,y随x增大而增大,于是得到结论【详解】解:(1)依等量关系式“销量=原销量-因涨价而减少销量,总利润=单个利润销量”可列式为: y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由题意可得:10+1300x30000=10000,解得:x=50或x=80,该玩具销售单价x应定为50元或80元(3)由题意可得:,解得:45x52,W=10+1300x30000=10(+12250,100,W随x的增大而减小,又45x52,当x=52时,W有最大值,最

14、大值为10560元,商场销售该品牌玩具获利的最大利润是10560元【考点】本题考查了一元二次方程的解法的运用,二次函数的解析式的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是关键2、 (1) a=-1;坐标为,;(2).【解析】【分析】(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y0,即-1-2+m0;当x=-1时,y0,即-1+2+m0,然后解两个不等式求出它

15、们的公共部分可得到m的范围【详解】根据题意得,解得,所以抛物线的解析式为,当时,解得,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,抛物线与轴的交点都在点,之间,当时,即,解得;当时,即,解得,的取值范围为【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数图象的几何变换3、 (1)见解析(2) 线 封 密 内 号学级年名姓 线 封 密 外 (3)的值为1或-5【解析】【分析】()计算判别式的值,得到,即可判定;()计算二次函数的对称轴为:

16、直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离对称轴越远对应的函数值越大点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为该抛物线的对称轴为直线若,即,则当时,有最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次

17、函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键4、(1);(2)不亏本,见解析 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论;(2)根据经过连续三次降价后的价格=经过连续两次降价后的价格(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论【详解】(1)解:设每次下降的百分率为, 依题意,得: ,解得:(不合题意,舍去)答:这种药品每次降价的百分率是20%;(2)128(1-20%)=102.4,102.4100,按此降价幅度再一次降价,药厂不会亏本【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键5、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2),【考点】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1