1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是(
2、)ABCD2、设方程的两根分别是,则的值为()A3BCD3、用配方法解方程时,原方程应变形为()ABCD4、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD5、若m,n是方程x2x2 0220的两个根,则代数式(m22m2 022)(n22n2 022)的值为()A2 023B2 022C2 021D2 020二、多选题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象如图所示下列结论正确的是()ABC若,是抛物线上的两点,则D关于x的方程无实数根2
3、、古希腊数学家欧几里得在几何原本中记载了用尺规作某种六边形的方法,其步骤是:在O上任取一点A,连接AO并延长交O于点B;以点B为圆心,BO为半径作圆弧分别交O于C,D两点;连接CO,DO并延长分别交O于点E,F;顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE连接AD,EF,交于点G,则下列结论正确的是 线 封 密 内 号学级年名姓 线 封 密 外 AAOE的内心与外心都是点GBFGAFOAC点G是线段EF的三等分点DEFAF3、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有()AA、B关于x轴对称;BA、B关于y轴对称;CA、B关于原点对称;D若
4、A、B之间的距离为44、下列各数不是方程解的是()A6B2C4D05、下列命题不正确的是()A三角形的内心到三角形三个顶点的距离相等B三角形的内心不一定在三角形的内部C等边三角形的内心,外心重合D一个圆一定有唯一一个外切三角形第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是_2、二次函数yax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_3、如图,四边形ABCD为O的内接正四边形,AEF为O的内接正三角形,连接DF若DF
5、恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为 _4、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_5、已知二次函数,当分别取时,函数值相等,则当取时,函数值为_四、解答题(5小题,每小题8分,共计40分)1、已知:如图所示,在ABC中,B90,AB5cm,BC7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动(1)如果P、Q分别从A、B同时出发,那么几秒后,PBQ的面积等于4cm2?(2)在(1)中,PQB的面积能否等于7cm2?请说明理由 线 封 密
6、 内 号学级年名姓 线 封 密 外 2、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?3、如图,方格中,每个小正方形的边长都是单位1,ABC的位置如图(1)画出将ABC向右平移2个单位得到的A1B1C1;(2)画出将ABC绕点O顺时针方向旋转90得到的A2B2C2;(3)写出C2点的坐标
7、4、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由5、解下列方程:(1);(2)-参考答案-一、单选题1、A【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6张
8、扑克中有2张方块,所以从中任抽一张,则抽到方块的概率 故选A【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.2、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率3、D【解析】【分析】移项,配方,变形后即可得出选项【详解】解:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D【考点】本题考查了解一元二次方程,能够正
9、确配方是解此题的关键4、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即 线 封 密 内 号学级年名姓 线 封 密 外 令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次
10、函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质5、B【解析】【详解】解:m、n是方程x2-x-2022=0的两个根,m2-m-2022=0,n2-n-2022=0,mn=-2022,m2-m=2022,n2-n=2022,(m22m2 022)(n22n2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)(-2022+n+2022)=-mn=2022,故选:B【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2
11、-n-2022=0,mn=-2022是解此题的关键二、多选题1、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误; 线 封 密 内 号学级年名姓 线 封 密 外 点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该
12、二次函数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【考点】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息2、ABC【解析】【分析】证明AOE是等边三角形,EFOA,ADOE,可判断A;证明AGF=AOF=60,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D【详解】解:如图,在正六边形AEDBCF中,AOF=AOE=EOD=60,OF=OA=OE=OD,AOF,AOE,EOD都是等边三角形, AF=AE=OE=OF,OA=AE=ED=OD,四边形AEOF,四边形A
13、ODE都是菱形,ADOE,EFOA,AOE的内心与外心都是点G,故A正确,EAF=120,EAD=30,FAD=90,AFE=30,AGF=AOF=60,故B正确,GAE=GEA=30,GA=GE,FG=2AG,FG=2GE,点G是线段EF的三等分点,故C正确,AF=AE,FAE=120,EF=AF,故D错误,故答案为:ABC【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形3、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可 线 封 密 内 号学级年名姓 线 封
14、 密 外 【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为 ,故D正确故选BD【考点】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键4、ACD【解析】【分析】分别把四个选项中的数代入方程,看方程两边是否相等即可求解【详解】解:A、将6代入得:,故6不是方程解,符合题意;B、将2代入得:,故2是方程解,不符合题意;C、将4代入得:,故4不是方程解,符合题意;D、将0
15、代入得:,故0不是方程解,符合题意;故选:ACD【考点】此题考查了一元二次方程解得含义,解题的关键是熟练掌握一元二次方程解得含义5、ABD【解析】【分析】根据三角形内心的定义和圆的外切三角形的定义判断即可【详解】解:A、三角形的内心是三个内角平分线的交点,内心到三角形三边的距离相等,错误,该选项符合题意;B、三角形的内心是三个内角平分线的交点,三角形的内心一定在三角形的内部,错误,该选项符合题意;C、等边三角形的内心,外心重合,正确,该选项不符合题意;D、经过圆上的三点作圆的切线,三条切线相交,即可得到圆的一个外切三角形,所以一个圆有无数个外切三角形,错误,该选项符合题意;故选:ABD【考点】
16、本题主要考查了内心和外心以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的定义与定理三、填空题1、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.243.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24x3.25之间【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24x3.25之间. 线 封 密 内 号学级年名姓 线 封 密 外 故答案为3.24x3.25.【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.2、(1,0)【解析】【分析】根据表中数据得
17、到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标【详解】x=-2,y=-3;x=0时,y=-3,抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点坐标为(-3,0),抛物线与x轴的一个交点坐标为(1,0)故答案为(1,0)【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了二次函数的性质3、12【解析】【分析】连接OA、OD、OF,如
18、图,利用正多边形与圆,分别计算O的内接正四边形与内接正三角形的中心角得到AOD=90,AOF=120,则DOF=30,然后计算即可得到n的值【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,AD,AF分别为O的内接正四边形与内接正三角形的一边,AOD=90,AOF=120,DOF=AOF-AOD=30,n=12,即DF恰好是同圆内接一个正十二边形的一边故答案为:12【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念4、 , 或【解析】【分析】根据抛物
19、线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案【详解】抛物线的对称轴为,抛物线与x轴一个交点为(5,0) 线 封 密 内 号学级年名姓 线 封 密 外 抛物线与x轴另一个交点为(-1,0)方程的解为:,由图像可知,不等式的解集为:或故答案为:,;或【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键5、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得
20、当x取2x1+2x2时,函数的值【详解】解:二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,2x12+2020=2x22+2020,x1=-x2,2x1+2x2=2(x1+x2)=0,当x=2x1+2x2时,y=20+2020=0+2020=2020,故答案为:2020【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答四、解答题1、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以
21、2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看PBQ的面积能否等于7cm2,只需令2x(5x)7,化简该方程后,判断该方程的与0的关系,大于或等于0则可以,否则不可以【详解】解:(1)设经过x秒以后PBQ面积为4cm2,根据题意得(5x)2x4,整理得:x25x+40,解得:x1或x4(舍去)答:1秒后PBQ的面积等于4cm2;(2)由(1)同理可得(5x)2x7整理,得x25x+70,因为b24ac25280,所以,此方程无解所以PBQ的面积不可能等于7cm2【考点】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于
22、一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在2、10万人、300元【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设门票价格为x元,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周旅游人数为y万人,每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【
23、考点】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键3、(1)见解析;(2)见解析;(3)C2(2,3)【解析】【分析】(1)根据平移的方法将三点向右平移2个单位得到,然后将三个点连起来即可;(2)根据旋转的方法将三点绕点O顺时针方向旋转90得到,然后将三个点连起来即可;(3)根据(2)中描出的点C2的位置即可写出C2点的坐标【详解】解:(1)如图所示,A1B1C1即为所求,(2)如图所示,A2B2C2即为所求,(3)由(2)中点C2的位置可得,C2点的坐标为(2,3) 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题考查了平面直角
24、坐标系中的平移和旋转变换作图以及求点的坐标,解题的关键是熟练掌握平移和旋转变换的方法4、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐标为,【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在
25、同一直线上时,最小抛物线解析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则, 线 封 密 内 号学级年名姓 线 封 密 外 当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,);点坐标为(,),(,),(,)【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质
26、,灵活运用数形结合思想得到坐标之间的关系是解题的关键5、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,; 线 封 密 内 号学级年名姓 线 封 密 外 (2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键