1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设
2、有x个队参赛,根据题意,可列方程为()ABCD2、关于的方程有两个不相等的实根、,若,则的最大值是()A1BCD23、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)30004、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个5、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的
3、区域种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD二、多选题(5小题,每小题4分,共计20分)1、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2= 线 封 密 内 号学级年名姓 线 封 密 外 C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,得x=12、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点下列结论正确的是()AC
4、E平分ACBBCE是PAB的内心D3、古希腊数学家欧几里得在几何原本中记载了用尺规作某种六边形的方法,其步骤是:在O上任取一点A,连接AO并延长交O于点B;以点B为圆心,BO为半径作圆弧分别交O于C,D两点;连接CO,DO并延长分别交O于点E,F;顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE连接AD,EF,交于点G,则下列结论正确的是 AAOE的内心与外心都是点GBFGAFOAC点G是线段EF的三等分点DEFAF4、下列语句中不正确的有()A等弧对等弦B等弦对等弧C相等的圆心角所对的弧相等D长度相等的两条弧是等弧5、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称
5、图形的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知二次函数,当分别取时,函数值相等,则当取时,函数值为_2、圆锥形冰淇淋的母线长是12cm,侧面积是60cm2,则底面圆的半径长等于_3、如图,四边形ABCD内接于O,A=125,则C的度数为_4、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.5、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_四、解答题(5小题,每小题8分,共计40分)1、用适当
6、的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-202、正方形ABCD的四个顶点都在O上,E是O上的一点 线 封 密 内 号学级年名姓 线 封 密 外 (1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长3、某水果店标价为10元/kg的某种水果经过两次降价后价格为8.1元/kg,并且两次降价的百分率相同时间/天x销量/kg120x储藏和损耗费用/元3x264x400(1)求
7、该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1x10)的利润为377元,求x的值4、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线5、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C
8、(1)求证:CBPD;(2)若ABC=55,求P的度数-参考答案-一、单选题1、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:设有x个队参赛,根据题意,可列方程为:x(x1)36,故选A【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.2、D【解析】【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可【详解】解:由方程有两个不相等的实根、可得,可得,即化
9、简得则故最大值为故选D【考点】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键3、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的
10、等量关系,即列出一元二次方程4、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛
11、物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点5、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.二、多选题1、ACD【解析】【分析】各方程求出解,即可作出判断【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8
12、,c=-5,=64+20=84,故选项A符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键2、ACD【解析】【分析】连接OA,BE,根据PA、PB是O的切线,可得PA=PB,OA=OB,可得OP是AB的垂直平分线,根据垂径定理,进而可以判断A;根据
13、OB=OC,AF=BF,可得OF是三角形BAC的中位线,进而即可判断D;证明PBE=EBA,APE=BPE,即可判断C;根据ACOE,可得CDAEDF,进而可以判断B【详解】如图,连接OA,BE,PA、PB是O的切线,PA=PB,OA=OB,OP是AB的垂直平分线,OPAB,ACE=BCE,CE平分ACB;故A正确;BC是O的直径,BAC=90,BFO=90,OFAC,OB=OC,AF=BF,OF=AC;故D正确;PB是O的切线,PBE+EBC=90,BC是O的直径,EBC+ECB=90,PBE=ECB,ECB=EBA,PBE=EBA,APE=BPE, 线 封 密 内 号学级年名姓 线 封 密
14、 外 E是PAB的内心;故C正确;ACOE,CDAEDF故B错误;结论正确的是A,C,D故选:ACD【考点】此题考查了圆周角定理、切线的性质、三角形中位线定理、及勾股定理的知识,解答本题的关键是熟练掌握切线的性质及圆周角定理,注意各个知识点之间的融会贯通3、ABC【解析】【分析】证明AOE是等边三角形,EFOA,ADOE,可判断A;证明AGF=AOF=60,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D【详解】解:如图,在正六边形AEDBCF中,AOF=AOE=EOD=60,OF=OA=OE=OD,AOF,AOE,EOD都是等边三角形, AF=AE=OE=OF,OA=AE=ED
15、=OD,四边形AEOF,四边形AODE都是菱形,ADOE,EFOA,AOE的内心与外心都是点G,故A正确,EAF=120,EAD=30,FAD=90,AFE=30,AGF=AOF=60,故B正确,GAE=GEA=30,GA=GE,FG=2AG,FG=2GE,点G是线段EF的三等分点,故C正确,AF=AE,FAE=120,EF=AF,故D错误,故答案为:ABC【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形4、BCD【解析】【分析】在同圆或是等圆中,相等的圆心角所对的弧相等,所对的弦相等;在
16、同圆或等圆中,能够互相重合的两条弧是等弧,据此判断就可以得到正确答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、等弧对等弦,正确;B、缺少前提在同圆或等圆中,故选项错误;C、缺少前提在同圆或等圆中,故选项错误;D、缺少前提在同圆或等圆中,故选项错误;故选:BCD【考点】本题考查等弧的概念和圆心角、弦、弧之间的关系,根据相关知识点解题是关键5、AB【解析】【分析】根据轴对称图形(如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合)和中心对称图形(把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合)的定义进行判断【详解】A选项:可以找到多条对称轴,是轴对称图
17、形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;B选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;C选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意;D选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意故选:AB【考点】考查中心对称图形和轴对称图形的概念,解题关键是熟记其概念:把一个图形绕某一点旋转180,如果旋转后的图形能
18、够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形三、填空题1、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值【详解】解:二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,2x12+2020=2x22+2020,x1=-x2,2x1+2x2=2(x1+x2)=0,当x=2x1+2x2时,y=20+2020=0+2020=2020
19、,故答案为:2020【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答2、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:设圆锥的底面圆的半径长为rcm则2r1260,解得:r5(cm),故答案为5cm【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.3、55#55度【解析】【分析】根据圆内接四边形的性质得出A+C=180,再求出答案即可【详解】解:四边形ABCD内接于O,A+C=180,A=125,C=180-125=55,故
20、答案为:55【考点】本题考查了圆内接四边形的性质和圆周角定理,能熟记圆内接四边形的对角互补是解此题的关键4、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300(1+x)2=432,(1+x)2=1.44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.5、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)
21、(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用四、解答题1、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为(x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,得x2+4x+46,即(x+2)26,两边开
22、平方,得x+2,x1-2,x2-2【考点】本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法2、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;(2)由(1)结论得AF=AE,;结合BAD=90,得EAF=90,从而得到EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;(3)连接BD,将CBE绕点C顺时针旋转90至CDH;结合题意,得CBE+CDE=180,从而得到E,D,H三点共线;根据BC=C
23、D,得,从而推导得BEC=DEC=45,即CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案【详解】(1)如图,在正方形ABCD中,AB=AD在ADF和ABE中ADFABE(SAS);(2)由(1)结论得:ADFABEAF=AE,3=4正方形ABCD中,BAD=90 线 封 密 内 号学级年名姓 线 封 密 外 BAF+3=90BAF+4=90EAF=90EAF是等腰直角三角形EF2=AE2+AF2EF2=2AE2EF=AE即DE-DF=AEDE-BE=AE;(3)连接BD,将CBE绕点C顺时针旋转90至CDH四边形BCDE内接于圆CBE+CDE=180E,D,H三点共线在正方形A
24、BCD中,BAD=90BED=BAD=90BC=CDBEC=DEC=45CEH是等腰直角三角形在RtBCD中,由勾股定理得BD=BC=5在RtBDE中,由勾股定理得:DE=在RtCEH中,由勾股定理得:EH2=CE2+CH2(ED+DH)2=2CE2,即(ED+BE)2=2CE264=2CE2CE=4【考点】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解3、 (1)10%(2)9【解析】【分析】(1)设该水果每次降价的百分率为y,根据题意列出一元二次方程即可求解;(
25、2)根据题意列出一元二次方程即可求解(1)设该水果每次降价的百分率为y,依题意,得10(1y)28.1,解得y10.110%,y21.9(不合题意,舍去)答:该水果每次降价的百分率为10%(2) 线 封 密 内 号学级年名姓 线 封 密 外 依题意,得,解得x19,x211(舍去)答:x的值为9【考点】本题考查了一元二次方程的应用,准确理解题意列出一元二次方程是解答本题的关键4、(1),M(,);(2),(,);(3)证明见试题解析【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR
26、的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,)根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出MPN=90,然后利用切线的判定定理即可证明直线MP是N的切线试题解析:(1)=,抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2),当y=0时,解得x=1或6,A(1,0),B(6,0),x=0时,y=3,C(0,3)连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC=设直线BC的解析式
27、为,B(6,0),C(0,3),解得:,直线BC的解析式为:,令x=,得y=,R点坐标为(,);(3)设点P坐标为(x,)A(1,0),B(6,0),N(,0),以AB为直径的N的半径为AB=,NP=,即,移项得,得:,整理得:,解得(与A重合,舍去),(在对称轴的右侧,舍去),(与B重合,舍去),点P坐标为(2,2)M(,),N(,0),=,=, =,MPN=90,点P在N上,直线MP是N的切线考点:1二次函数综合题;2最值问题;3切线的判定;4压轴题5、(1)证明见解析;(2)35【解析】【详解】试题分析:(1)要证明CBPD,只要证明1=P;由1=C,P=C,可得1=P,即可解决问题;(2)在RtCEB中,求出C即可解决问题.试题解析:(1)如图,1=C,P=C, 线 封 密 内 号学级年名姓 线 封 密 外 1=P,CBPD;(2)CDAB,CEB=90,CBE=55,C=9055=35,P=C=35.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识
Copyright@ 2020-2024 m.ketangku.com网站版权所有