1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项攻克试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()
2、A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关2、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大3、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D24、关于函数,下列说法:函数的最小值为1;函数图象的对称轴为直线x3;当x0时,y随x的增大而增大;当x0时,y随x的增大而减小,其中正确的有()个A1B2C3D45、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺
3、时针方向旋转90,得到,则点的坐标为()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是()ABCD2、下列说法中,不正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A平分一条直径的弦必垂直于这条直径B平分一条弧的直线垂直于这条弧所对的弦C弦的垂线必经过这条弦所在圆的圆心D在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心3、若为圆内接四边形,则下列哪个选项可能成立()ABCD4、(多选)若数使关于的一元二次方程有两个不相等
4、的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为()A1B3C5D75、如图,AB为O直径,弦CDAB于E,则下面结论中正确的是()ACE=DEB弧BC=弧BDCBAC=BADDOE=BE第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12则该图象的对称轴是_2、如果关于x的方程x23x+k0(k为常数)有两个相等的实数根,那么k的值是_3、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_4、如图,ABC内接于O,CAB=30,
5、CBA=45,CDAB于点D,若O的半径为2,则CD的长为_5、如图,是等边三角形,点D为BC边上一点,以点D为顶点作正方形DEFG,且,连接AE,AG若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为_四、解答题(5小题,每小题8分,共计40分)1、如图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO 线 封 密 内 号学级年名姓 线 封 密 外 (1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a
6、,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值2、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线3、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度
7、的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由4、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?5、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,ABC为等边三角形,求SABC; 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【解析】【分析】
8、分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键2、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次
9、函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键3、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】
10、本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解4、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性【详解】解:,该函数图象开口向上,有最小值1,故正确;函数图象的对称轴为直线,故错误;当x0时,y随x的增大而增大,故正确;当x3时,y随x的增大而减小,当3x0时,y随x的增大而增大,故错误故选:B【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质5、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查
11、了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键二、多选题1、ACD【解析】【分析】根据垂径定理和圆周角定理可以判断A,根据圆周角定理可以判断B,根据圆周角定理、垂径定理以及等角对等边,即可判断C,根据圆周角定理、垂径定理以及平行线的判定,即可判断D【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:AB是圆O的直径,故A正确;AB是圆O的直径,即,也没有其他条件可以证得和的另外一组内角对应相等,不能证得,故B不正确;点C是的中点,AB是圆O的直径,故C正确;点C是的中点,AB是圆O的直径,故D正确故选ACD【考点】本题主要考查了垂径定理、圆周角定理、等腰三角形的判定以及平行线
12、的判定2、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:垂直于弦,平分弦,过圆心,平分优弧,平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意; 线 封 密 内 号
13、学级年名姓 线 封 密 外 故选ABC【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论3、BD【解析】【分析】根据圆内接四边形的性质得出A+C=B+D=180,再逐个判断即可【详解】解:四边形ABCD是圆内接四边形,A+C=180,B+D=180,A+C=B+D,A,A+CB+D,故本选项不符合题意;B,A+C=B+D,故本选项符合题意;C,A+CB+D,故本选项不符合题意;D,A+C=B+D,故本选项符合题意;故选:BD【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补4、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为
14、非负整数分别求出a的取值范围,即可得答案【详解】关于的一元二次方程有两个不相等的实数解,解得:,解得:,关于的分式方程的解为非负整数,且,解得:且,且a3,是整数,a=1或5,故选:AC【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解5、ABC【解析】【分析】根据垂径定理知,垂直于弦的直径平分弦,并且平分线所对的两条弧,即可判断A选项、B选项正确,由圆周角定理知,在同圆或等圆中,同弧所对的圆周角相等,可判断C选项正确,题目中并没有提到E是OB中点,所
15、以不能证明OE=BE【详解】A. AB为O直径,弦CDAB于E,由垂径定理得:CE=DE,A选项正确;B.由垂径定理得:,B选项正确;C. ,由圆周角定理得:BAC=BAD,C选项正确;D. E不一定是OB中点,所以不能证明OE=BE,D错误故选:ABC【考点】本题考查垂径定理和圆周角定理,熟知垂直于弦的直径平分弦,并且平分线所对的两条弧是解题的关键三、填空题1、【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特
16、征,解题的关键是明确题意,利用二次函数的对称性解答2、【解析】【分析】根据判别式的意义得到=(-3)2-4k=0,然后解一元一次方程即可【详解】解:根据题意得=(-3)2-4k=0,解得k=故答案为【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根3、1【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故
17、答案为:1【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用4、【解析】【分析】连接OA,OC,根据COA=2CBA=90可求出AC=,然后在RtACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=90,在RtAOC中,AC=,CDAB,在RtACD中,CD=ACsinCAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.5、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小
18、值,在中,由勾股定理得出,在中,由勾股定理即可得出【详解】过点A作于M, 线 封 密 内 号学级年名姓 线 封 密 外 是等边三角形,在中,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,在中,;故答案为8【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键四、解答题1、 (1);(2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式
19、;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可(1)解:解方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得, 线 封 密 内 号学级年名姓 线 封 密 外 解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,PD
20、与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,当时,当时,;(3)解:,当MAB=90时,解得,当ABM=90时,解得m=7,当AMB=90时,解得,m的值为3或1或2或7【考点】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键2、(1),M(,);(2),(,);(3)证明见试题解析 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交
21、点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,)根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出MPN=90,然后利用切线的判定定理即可证明直线MP是N的切线试题解析:(1)=,抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2),当y=0时,解得x=1或6,A(1,0),B(6,0),x=0时,y=3,C(0,3)连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为B
22、C=设直线BC的解析式为,B(6,0),C(0,3),解得:,直线BC的解析式为:,令x=,得y=,R点坐标为(,);(3)设点P坐标为(x,)A(1,0),B(6,0),N(,0),以AB为直径的N的半径为AB=,NP=,即,移项得,得:,整理得:,解得(与A重合,舍去),(在对称轴的右侧,舍去),(与B重合,舍去),点P坐标为(2,2)M(,),N(,0),=,=, =,MPN=90,点P在N上,直线MP是N的切线考点:1二次函数综合题;2最值问题;3切线的判定;4压轴题3、1y=-x2+2x+3,y=-x+3; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶
23、点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为, 线 封 密 内 号学级年名姓 线 封 密 外 点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形,
24、当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键本题考查知识点较多,综合性较强,难度适中4、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元【解析】【分析】(1)根据图象可得:当,当,;再用待定系数法求解即可; 线 封 密 内 号学级年名姓 线 封 密 外 (2)根据这种干果每千克的利润销售量=20
25、90列出方程,解方程即可【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;,解得:,与之间的函数关系式为;(2)由题意得:,整理得:,解得:,让顾客得到更大的实惠,.答:商贸公司要想获利2090元,这种干果每千克应降价9元【考点】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键5、 【解析】【分析】过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),于是得到对称轴为直线x=2,设B(m,n),根据ABC是等边三角形,得到BC=AB=2m-4,BCP=ABC=60,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根据三角形的面积公式即可得到结果【详解】解:过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),对称轴为直线x=2,设B(m,n),CP=m-2,ABx轴,AB=2m-4,ABC是等边三角形,BC=AB=2m-4,BCP=ABC=60,PB=PC=(m-2),PB=n=,(m-2)=,解得m=,m=2(不合题意,舍去),AB=,BP=,SABC= 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查二次函数的性质.
Copyright@ 2020-2024 m.ketangku.com网站版权所有