1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是()A6B12C1
2、2或D6或2、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD3、已知x1,x2是一元二次方程2x23x5的两个实数根,下列结论错误的是()A23x15B(x1x2)(2x12x23)0Cx1x2Dx1x24、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒5、下列方程:;是一元二次方程的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下面的图案中,是中心对称图形的有()ABCD2、如图,在ABC中
3、,ABBC,将ABC绕点B顺时针旋转a度,得到A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有()ACDFa度BA1ECFCDFFCDBEBF3、下列关于x的方程的说法正确的是()A一定有两个实数根B可能只有一个实数根 线 封 密 内 号学级年名姓 线 封 密 外 C可能无实数根D当时,方程有两个负实数根4、对于二次函数y=+2x下列结论中正确的个数为( )A它的对称轴是直线x=1B设=+2,=+2,则当时,有C它的图象与x轴的两个交点是(0,0)和(2,0)D当0x2时,y05、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是()x3
4、20135y708957A抛物线的顶点坐标为(1,9);B与y轴的交点坐标为(0,8);C与x轴的交点坐标为(2,0)和(2,0);D当x=1时,对应的函数值y为5第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _2、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐
5、每天销售总份数不变,那么这两种快餐一天的总利润最多是_元3、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.4、若代数式有意义,则x的取值范围是 _5、二次函数的最大值是_四、解答题(5小题,每小题8分,共计40分)1、如图,一次函数图象与坐标轴交于点A、B,二次函数图象过A、B两点 线 封 密 内 号学级年名姓 线 封 密 外 (1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由2、用适当的方法解下列方程:(1)(2)3、已知x1
6、,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值4、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房
7、间定价确定为多少元时,获得利润最大?求出最大利润?5、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值-参考答案-一、单选题1、D【解析】【分析】根据题意,先将方程的两根求出,然后对两根分别作为直角三角
8、形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可【详解】解方程得,当3和4分别为直角三角形的直角边时,面积为;当4为斜边,3为直角边时根据勾股定理得另一直角边为,面积为;则该直角三角形的面积是6或,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键2、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1
9、),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键3、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可【详解】解:x1、x2是一元二次方程2x2-3x=5的两个实数根,故A正确,不符合题意;这里a=2,b=-3,c=-5,故B、C正确,不符合题意,D错误,符合题意故选:D【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,是解题的关键4、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得
10、到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.5、D【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次
11、方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2二、多选题1、ABCD【解析】【分析】根据中心对称图形的概念依次分析即可【详解】解:A、B、C、D都是中心对称图形,都能绕对角线的交点旋转180度与自身完全重合故选ABCD【点睛】本题考查的是中心对称图形,解答本题的关键是熟练掌握如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形2、ABD【解析】【分析】根据等腰三角形的性质由BABC得AC,再根据旋转的性质得BABA1BCBC1,ABA1CBC1,AA1CC1,而根据对顶角相等得BFC1DFC,于是可根据三角形内
12、角和定理得到CDFFBC1;利用“ASA”证明BAEBC1F,则BEBF,所以A1ECF;由于CDF,则只有当旋转角等于C时才有DFFC【详解】解:BABC,AC,ABC绕点B顺时针旋转度,得到A1BC1,BABA1,BCBC1,ABA1CBC1,AA1CC1,BFC1DFC,CDFFBC1,所以A正确,BABA1BCBC1,在BAE和BC1F中 线 封 密 内 号学级年名姓 线 封 密 外 ,BAEBC1F(ASA),BEBF,故D正确而BA1BC,A1ECF,所以B正确;CDF,当旋转角等于C时,DFFC,所以C错误;故选ABD【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰
13、三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.3、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可【详解】解:当a=0时,方程整理为解得, 选项B正确;故选项A错误;当时,方程是一元二次方程,此时的方程表两个不相等的实数根,故选项C错误;若时, ,当时,方程有两个负实数根选项D正确,故选:BD【点睛】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键4、ACD【解析】【分析】利用公式法计算对称轴,利用解方程法确定交点坐标,根据函数图像及其开口判断y的属性,函数的增减性即可 线 封 密 内 号学级年名姓 线 封
14、密 外 【详解】二次函数y=+2x,x=1,故A正确;=+2,=+2,(,),(,)都是二次函数y=+2x图像上的点,对称轴为x=1,a=-10,当1时,;当1时,;故B不正确;二次函数y=+2x,令y=0,得+2x=0,解得 它的图象与x轴的两个交点是(0,0)和(2,0),故C正确;二次函数y=+2x的开口向下,且它的图象与x轴的两个交点是(0,0)和(2,0),当0x2时,y0,故D正确;故选ACD【点睛】本题考查了二次函数的对称性,增减性,与x轴的交点坐标,熟练掌握抛物线的性质是解题的关键5、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:
15、x=-3与x=5时,都是y=7,由抛物线的对称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=1时,对应的函数值,判断即可【详解】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=5时,都是y=7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为 (4,0),C错误,不符合题意;由抛物线的对称
16、性可知:当x=-1时,对应的函数值与x=3时相同,对应的函数值y=-5,D正确,符合题意,故答案为:ABD【点睛】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息三、填空题 线 封 密 内 号学级年名姓 线 封 密 外 1、17【解析】【分析】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-
17、3,整理得x2-(10+k)x+36=0,10+k=12,解得k=2或k=-22(舍去),k的最大值是15,最小值是2,k的最大值与最小值的和为15+2=17故答案为:17【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键2、1264【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1
18、264元故答案为:1264【考点】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点3、【解析】【分析】由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上,.故答案是:【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.4、3x且x【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0【详解】解:若代数式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且
19、x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于05、8【解析】【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值8故答案为8【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.四、解答题1、(1)抛物线的解析式为:;(2)Q点坐标为(1,)或(3,0)或(-1,0)【解析】【分析】(1)由直线与
20、坐标轴的交点坐标A,B,代入抛物线解析式,求出b,c坐标即可;(2)分BC为对角线和边两种情况讨论,其中当BC为边时注意点Q的位置有两种:在点P右侧和左侧,根据菱形的性质求解即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1)对于:当x=0时,;当y=0时,妥得,x=3A(3,0),B(0,)把A(3,0),B(0,)代入得: 解得, 抛物线的解析式为:;(2)抛物线的对称轴为直线 故设P(1,p),Q(m,n)当BC为菱形对角线时,如图,B,C关于对称没对称,且对称轴与x轴垂直,BC与对称轴垂直,且BC/x轴在菱形BQCP中,BCPQPQx轴点P在x=1上,点Q也在x=1上
21、,当x=1时,Q(1,);当BC为菱形一边时,若点Q在点P右侧时,如图,BC/PQ,且BC=PQBC/x轴,令,则有解得, PQ=BC=2 线 封 密 内 号学级年名姓 线 封 密 外 PB=BC=2迠P在x轴上,P(1,0)Q(3,0);若点Q在点P的左侧,如图, 同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)【点睛】本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力2、 (1),(2),【解析】【分析】根据因式分解法解一元二次方程即可(1)解:解得,(2)解:解得,【点睛】本
22、题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题的关键3、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1, 线 封 密 内 号学级年名姓 线 封 密 外 将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1
23、或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【点睛】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.4、(1)zx+122(x168);(2)应将房间定价确定为260元时,获得利
24、润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案【详解】解:(1)由题意得:z80(x42)x+122,入住房间z(间)与定价x(元/间)之间关系式为zx+122(x168);(2)设利润为w元,由题意得:w(x+122)x36(x+122)4000x2+131x8392,当x262时,w最大,此时z56.5非整数,不合题意, 线 封 密 内 号学级年名姓 线 封 密 外 x260或264时,w最大,让客人得到实惠,x260,w最大2602
25、+13126083928767,应将房间定价确定为260元时,获得利润最大,最大利润为8767元【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性质是解题的关键5、 (1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键