1、京改版八年级数学上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、实数2021的相反数是()A2021BCD2、如图,已知,以两点为圆心,大于的长为半径画圆,两弧相交于点,连接与相较于
2、点,则的周长为()A8B10C11D133、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD14、如图,四边形中,且,则四边形的面积为()ABCD5、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D10二、多选题(5小题,每小题4分,共计20分)1、下列说法中不正确的是()A带根号的数是无理数B无理数不能在数轴上表示出来C无理数是无限小数D无限小数是无理数2、下列说法不正确的是()A无理数就是开方开不尽的数B无理数是无限不循环小数C带根号的数都是无理数D无限小数都是无理
3、数3、下列实数中的无理数是()ABCD4、如图,实数a,b在数轴上的对应点在原点两侧,下列各式成立的是()ABCD5、如图,下列结论正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,等边ABC的边长为6,点D是AB上一动点,过点D作DEAC交BC于E,将BDE沿着DE翻折得到,连接,则的最小值为_2、附加题:观察以下几组勾股数,并寻找规律:3,4,5;5,12,13;7,24,25;9,40,41;请你写出有以上规律的第组勾股数:_3、如图,平分,的延长线交于点,若,则的度数为_4、我国元代数学家朱世杰的著作四元玉鉴中记载“买椽多少”问题:“六贯
4、二百一十钱,请人去买几株椽,每株脚钱三文足,无钱准与一株椽”其大意为:用6210文钱请人代买一批椽如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是_5、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_四、解答题(5小题,每小题8分,共计40分)1、(1)计算:(2)2(3.14)0+;(2)化简:(x3)(x+3)+x(2x)2、如图,在ABC中,ACB=90,A=30,AB的垂直平分线分别交AB和AC于点D,E. (1)求证:AE=2CE;(2)连接CD,请判断BCD的形状,并说
5、明理由.3、计算(1) ;(2)4、计算:(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+(2a2)3(5)(9)3()3()35、解方程:(1)(2)-参考答案-一、单选题1、B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案【详解】解:2021的相反数是:故选:B【考点】本题主要考查相反数的定义,正确掌握其概念是解题关键2、A【解析】【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到BDC的周长=AC+BC【详解】由作法得MN垂直平分AB,DA=
6、DB,BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8故选A【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了线段垂直平分线的性质3、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键4、C【解析】【分析】连接AC,在RtADC中,已知
7、AB,BC的长,运用勾股定理可求出AC的长,在ADC中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD的面积为RtACD与RtABC的面积之差【详解】解:连接AC,AC=5cm,CD=12cm,DA=13cm, ADC为直角三角形,故四边形ABCD的面积为24cm2故选:C【考点】本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出ACD的形状是解答此题的关键5、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符
8、合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键二、多选题1、ABD【解析】【分析】举出反例如,循环小数1.333,即可判断A、D;根据数轴上能表示任何一个实数即可判断B;根据无理数的定义即可判断C【详解】解:A、如2,不是无理数,故本选项错误,符合题意;B、数轴上的点与实数一一对应,无理数都能在数轴上表示出来,故本选项错误,符合题意;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确,不符合题意;D、如1.33333333,是无限循环小数,是有理数,故本选项错误,符合题意;故选:ABD【考点】本题考查了对无理
9、数的意义的理解和运用,无理数包括:开方开不尽的数,含的,一些有规律的数2、ACD【解析】【分析】根据无理数的定义以及性质,对选项逐个判断即可【详解】解:A、无理数包含开方开不尽的数,选项说法错误,符合题意;B、无限不循环小数统称无理数,选项正确,不符合题意;C、带根号的数都是无理数,说法错误,比如,为有理数,符合题意;D、无限不循环小数是无理数,无限循环小数是有理数,选项错误,符合题意;故选ACD【考点】此题考查了无理数的定义以及性质,无限不循环小数是无理数,熟练掌握无理数的有关性质是解题的关键3、BC【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理
10、数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项【详解】解:A,是有理数,不符合题意;B、,是无理数,符合题意;C、,是无理数,符合题意;D、,是有理数,不符合题意;故选BC【考点】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数4、AD【解析】【分析】根据数轴判断出a、b的取值范围,再根据有理数的乘除法,加减法运算对各选项分析判断后利用排除法求解【详解】解:由题意可知,a0b,且|a|b|,A、,故本选项符合题意;B、-ab,故本选项不符合题意;C、a-b0,故本选项符合题意; D、,故
11、本选项符合题意故选:A D【考点】本题考查了实数与数轴,有理数的乘除运算以及有理数的加减运算,判断出a、b的取值范围是解题的关键5、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意;D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和三、填空题1、3【解析】【分析】先找出B点变化
12、的规律,可发现B在ABC的角平分线上运动,故AB取最小值时,B点在AC中点上【详解】如图,DEAC,ABC是等边三角形,BDE是等边三角形,折叠后的BDE也是等边三角形,过B作DE的垂直平分线,BDBE,BDBE,BB都在DE 的垂直平分线上,AB最小,即A到DE的垂直平分线的距离最小,此时ABBB,AB=AC=1263,即AB的最小值是3故答案为:3【考点】本题主要考查等边三角形和垂直平分线的性质,掌握和理解等边三角形性质是本题关键2、11,60,61【解析】【分析】由所给勾股数发现第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由
13、勾股定理得:,计算求解即可【详解】解:由所给勾股数发现第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,解得x60,第5组数是:11、60、61故答案为:11、60、61【考点】本题考查了数字类规律,勾股定理等知识解题的关键在于推导规律3、【解析】【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案【详解】解:如图,连接,延长与交于点 平分, 是的垂直平分线, 故答案为: 【考点】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键
14、4、【解析】【分析】根据单价=总价 数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【详解】依据题意,得:故答案为:【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.5、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关
15、键四、解答题1、(1)3+2;(2)2x9【解析】【分析】(1)先计算负整数指数幂,零指数幂,化简二次根式,然后计算加减法;(2)先利用平方差公式和单项式乘多项式去括号,然后计算加减法【详解】(1)原式41+23+2(2)原式x29+2xx22x9【考点】考查了平方差公式,实数的运算,单项式乘多项式,零指数幂等知识点,熟记计算法则即可解答,属于基础题2、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得ABE=A;结合三角形外角的性质可得BEC的度数,再在RtBCE中结合含30角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角
16、形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到ABC=60,至此不难判断BCD的形状【详解】(1)证明:连结BE,如图DE是AB的垂直平分线,AEBE,ABEA30,CBEABCABE30,在RtBCE中,BE2CE,AE2CE.(2)解:BCD是等边三角形理由如下:DE垂直平分AB,D为AB的中点ACB90,CDBD.又ABC60,BCD是等边三角形【考点】此题考查了线段垂直平分线的性质、30角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边
17、的一半是解(2)的关键,3、 (1);(2)【解析】【分析】(1)首先化简二次根式,之后进行实数的加减运算即可;(2)首先化简二次根式、计算零次幂,去绝对值,最后进行实数加减运算即可(1)解:原式;(2)解:原式【考点】本题主要考查实数的运算,掌握二次根式的化简、零次幂运算、绝对值的性质是解题的关键4、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解
18、答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法5、(1);(2)无解【解析】【分析】(1)先通分,把分母变为,再去分母,求出解,最后检验;(2)先通分,把分母变为,再去分母,求出解,最后检验【详解】解:(1),经检验是原方程的解;(2),经检验是增根,原方程无解【考点】本题考查解分式方程,解题的关键是掌握解分式方程的方法,需要注意结果要检验