收藏 分享(赏)

2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx

上传人:a**** 文档编号:699883 上传时间:2025-12-13 格式:DOCX 页数:22 大小:428.08KB
下载 相关 举报
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第1页
第1页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第2页
第2页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第3页
第3页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第4页
第4页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第5页
第5页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第6页
第6页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第7页
第7页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第8页
第8页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第9页
第9页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第10页
第10页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第11页
第11页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第12页
第12页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第13页
第13页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第14页
第14页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第15页
第15页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第16页
第16页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第17页
第17页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第18页
第18页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第19页
第19页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第20页
第20页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第21页
第21页 / 共22页
2022年北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、北师大版八年级数学上册第一章勾股定理定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九章算术中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺问折高者几何?意思是:一根竹子,原高一丈(一丈10

2、尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为()ABCD2、如图,三角形纸片ABC,点D是BC边上一点,连接AD,把ABD沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DGGE,AF6,BF4,ADG的面积为8,则点F到BC的距离为()ABCD3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开4 m后,发现下端刚好接触地面,则旗杆的高为()A7 mB7.5 mC8 mD9 m4、如图,ABC中,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示

3、的长方形中,若要求图中两个阴影部分面积之和,则只需知道()A以BC为边的正方形面积B以AC为边的正方形面积C以AB为边的正方形面积DABC的面积5、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D66、勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A直角三角形的面积B最大正方形的面积C较小两个正方形重叠部分的面积D最大正方形与直角三角形的面积和7、在ABC中,那么ABC是()

4、A等腰三角形B钝角三角形C直角三角形D等腰直角三角形8、已知直角三角形纸片的两条直角边长分别为m和n(mn),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )Am2+2mn+n2=0Bm22mn+n2=0Cm2+2mnn2=0Dm22mnn2=09、我国古代数学名著算法统宗有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,5尺人高曾记,仕女家人争蹴良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?

5、”,设秋千的绳索长为尺,根据题意可列方程为()ABCD10、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,15第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代数学著作九章算术中记载了一个问题:“今有池方一丈,葭(ji)生其中,出水一尺引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC1尺)如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_尺2、勾股定理最早出现在商高的周髀算经:“勾广三,股

6、修四,经隅五”观察下列勾股数:3,4,5;5,12,13;7,24,25;,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;,若此类勾股数的勾为2m(m3,m为正整数),则其弦是_(结果用含m的式子表示)3、如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合若BC=8,CD=6,则CF的长为_4、如图,在中,将线段绕点顺时针旋转至,过点作,垂足为,若,则的长为_5、如图,在中,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于

7、点E、F,则DF的长为_三、解答题(5小题,每小题10分,共计50分)1、点P到y轴的距离与它到点A(-8,2)的距离都等于 13,求点P 的坐标。2、如图,在44的正方形网格中,每个小正方形的边长均为1(1)请在所给网格中画一个边长分别为,的三角形;(2)此三角形的面积是 3、如图,点B,F,C,E在同一条直线上,且(1)求证:(2)若,求BE的长4、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?5、如图,将RtABC纸片沿AD折叠,使直角顶点C与AB边上的点E重合,若AB10cm,A

8、C6cm,求线段BD的长-参考答案-一、单选题1、D【解析】【分析】先画出三角形,根据勾股定理和题目设好的未知数列出方程【详解】解:如图,根据题意,设折断处离地面的高度是x尺,即,根据勾股定理,即故选:D【考点】本题考查勾股定理的方程思想,解题的关键是根据题意利用勾股定理列出方程2、C【解析】【分析】先求出ABD的面积,根据三角形的面积公式求出DF,设点F到BD的距离为h,根据BDhBFDF,求出BD即可解决问题【详解】解:DGGE,SADGSAEG8,SADE16,由翻折可知,ADBADE,BEAD,SABDSADE16,BFD90,(AF+DF)BF16,(6+DF)416,DF2,DB,

9、设点F到BD的距离为h,则有BDhBFDF,h42,h,点F到BC的距离为故选:C【考点】此题考查了翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题3、B【解析】【分析】根据题意,画出图形,设旗杆AB=x米,则AC=(x+1)米,在RtABC中,根据勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【详解】如图所示:设旗杆AB=x米,则AC=(x+1)米,在RtABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5故选B【考点】本题考查了勾股定理的应用,解决本题的基本思路是是画出示意图,利用勾股定理列

10、方程求解4、D【解析】【分析】如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,证明ADECAN得到,AE=CN同理可证BGHCBN,得到,BH=CN,则,即可推出由此即可得到答案【详解】解:如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,CNA=DEA=DAC=90,DAE+EDA=DAE+CAN=90,ADE=CAN,又AD=CA,ADECAN(AAS),AE=CN同理可证BGHCBN,BH=CN, ,只需要知道ABC的面积的面积即可求出阴影部分的面积,故选D【考点】本题主要考查了全等三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全

11、等三角形5、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,C=90,AC=8cm,BC=6cm,AB=10cm,由折叠的性质知,BH=BC=6cm,AH=AB-BH=4cm故选:C【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键6、C【解析】【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定

12、理得,c2=a2+b2,阴影部分的面积=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c27、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点

13、】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答8、C【解析】【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n-m)2,整理即可求解【详解】m2+m2=(nm)2, 2m2=n22mn+m2, m2+2mnn2=0故选C.9、C【解析】【分析】根据勾股定理列方程即可得出结论【详解】解:由题意知:OC=x-(5-1),PC=10,OP=x,在RtOCP中,由勾股定理得:x-(5-1)2+102=x2即故选:C【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键10、B【解析】【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可

14、【详解】解:A、32+42=52,故是直角三角形,不符合题意;B、42+5262,故不是直角三角形,符合题意;C、62+82=102,故是直角三角形,不符合题意;D、92+122=152,故是直角三角形,不符合题意;故选:B【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形二、填空题1、12【解析】【分析】设水深为h尺,则芦苇长为(h + 1)尺,根据勾股定理列方程,解出h即可【详解】设水深为h尺,则芦苇长为(h+ 1)尺,根据勾股定理,得(h+ 1)2-h2=52解得h = 12,水深为12尺,故答案是: 12【考点

15、】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键2、m2+1【解析】【分析】2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论【详解】2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,弦长为m2+1,故答案为:m2+1【考点】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键3、【解析】【分析】设,在中利用勾股定理求出x即可解决问题【详解】解:是的中点,由折叠的性质知:,设,则, 在中,根据勾股定理得:,即:,解得,故答案为:【考点】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学

16、会转化的思想,利用方程的去思考问题,属于中考常考题型4、【解析】【分析】过作,为垂足,通过已知条件可以求得,从而求得,再根据直角三角形的性质,即可求解【详解】解:过作,为垂足,又,又,在与中,在中,设,则由勾股定理可得即解得故答案为【考点】此题主要考查了三角形全等的证明方法和直角三角形的有关性质,利用已知条件合理构造直角三角形是解决本题的关键5、【解析】【分析】根据折叠的性质可得,从而得出相应角相等,再根据角之间的关系得出,从而得出为等腰直角三角形,再根据勾股定理求出的长度,利用三角形的面积公式求出的长度,再求出、的长度,最后求出的长度【详解】解:边AC沿CE翻折,使点A落在AB上的点D处,边

17、BC沿CF翻折,使点B落在CD的延长线上的点处,为等腰直角三角形,故答案为:【考点】本题主要考查了图形的翻折变化,勾股定理的运用,等腰直角三角形的判定,根据折叠的性质求得相应的角是解答本题的关键三、解答题1、或.【解析】【分析】由P到y轴的距离为13,可得P点横坐标为13或-13,设出P点坐标,然后利用两点间的距离公式建立方程求解即可.【详解】解:点P到y轴的距离为13,P点横坐标为13或-13当P点横坐标为13时,设P(13,a)由点P到点A(-8,2)的距离等于13得:整理得,无解,故此种情况不存在;当P点横坐标为-13时,设P(-13,a)同理可得整理得,解得或点P的坐标为或.【考点】本

18、题考查直角坐标系中两点间的距离公式与解一元二次方程,熟练掌握公式建立方程是解题的关键.2、(1)画图见解析;(2)【解析】【分析】(1)利用勾股定理在网格中确定再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可.【详解】解:(1)如图,即为所求作的三角形,其中: (2) 故答案为:【考点】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.3、 (1)见解析(2)6【解析】【分析】(1)根据已知条件利用证明即可;(2)根据勾股定理求解即可(1)证明:,又,(2)解:,且,由勾股定理得,【考点】本题考查了全等三角形的性质与判定,勾股定理解直角三角形,掌握以上知识是解题的关键4、E应建在距A点15km处【解析】【分析】设,则,根据勾股定理求得和,再根据列式计算即可;【详解】设,则,由勾股定理得:在中,在中,由题意可知:,所以:,解得:所以,E应建在距A点15km处【考点】本题主要考查了勾股定理的实际应用,准确计算是解题的关键5、5【解析】【分析】利用勾股定理先求出的值,根据折叠的性质可得出, ,设,列方程求解即可【详解】解:由题意可知:,则,设,则,解方程得:因此,的长为所以,【考点】本题考查的知识点是勾股定理的应用,根据题意构造直角三角形是解此题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1