ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:781.80KB ,
资源ID:697854      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-697854-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省惠州市2021届高三第一次调研考试数学试题 WORD版含答案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广东省惠州市2021届高三第一次调研考试数学试题 WORD版含答案.docx

1、惠州市2021届高三第一次调研考试试题数 学全卷满分150分,时间120分钟 2020.07注意事项:1答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。2作答单项及多项选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。3非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。一、单项选择题:本题共10小题,每小题满分5分,共50分。在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分。1设集合,集合, 则( ).A B C

2、D2复数满足,其中为虚数单位,则复数=( ).A B C D 3已知,则( ).A B C D4已知向量,向量,若,则实数( ).A B C D5已知正方体的棱长为1,则直线与直线所成角的余弦值为( ).A B C D6已知双曲线的一条渐近线平行于直线,则双曲线的离心率为( ).A B C D7张丘建算经是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间。其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同。已知第一日织布5尺,30日共织布390尺,则该女子织布每日增加( )尺.A B C D8函数的部分图象的大致形状是( ).A B C D

3、9根据中央关于精准脱贫的要求,某市某农业经济部门随机派遣甲、乙等共4位专家对3个县区进行调研,每个县区至少派1位专家,则甲、乙两位专家派遣至同一县区的概率为( ).A B C D10对于函数,若在定义域内存在实数x,满足,称为“局部奇函数”.若为定义域R上的“局部奇函数”,则实数m的取值范围是( ). A BC D二、多项选择题:本题共2小题,每小题满分5分,共10分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得3分,有选错的得0分。11下列选项中正确的是()A不等式恒成立 B存在实数a,使得不等式成立C若为正实数,则 D若正实数x,y满足,则12在空间中,已知是两

4、条不同的直线,是两个不同的平面,则下列选项中正确的是( )A若,且,则 B若,且,则C若与相交,且,则与相交 D若,且,则三、填空题:本题共4小题,每小题5分,共20分,其中16题第一个空3分,第二个空2分。13函数在点的切线方程为_14二项式的展开式中的系数是_15若抛物线上的点M到焦点的距离为10,则M点到y轴的距离是_16已知ABC,ABAC4,BC2,点D为AB延长线上一点,BD2,连接CD,则BDC的面积是_,cosBDC_四、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(本小题满分10分) 已知等差数列的公差,若,且,成等比数列(1)求数列的通项公式;(2)设,求

5、数列的前项和18(本小题满分12分)在中,角的对边分别为,且.(1)求角的值;(2)若,的面积为,求的周长19(本小题满分12分)CEDBAF如图,是边长为3的正方形,平面,与平面所成角为(1)求证:平面;(2)求二面角的余弦值;20(本小题满分12分)已知椭圆()的一个焦点为,且该椭圆经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点、,试问在轴上是否存在定点 使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.21(本小题满分12分)已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者。血液化验结果呈阳性的即为感染者,呈阴

6、性即为健康(1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;(2)血液化验确定感染者的方法有:逐一化验;平均分组混合化验:先将血液样本平均分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者。(i)采取逐一化验,求所需化验次数的分布列及数学期望;(ii)采取平均分组混合化验(每组血液份数相同),求不同分组方法所需化验次数的数学期望。你认为选择哪种化验方案更合理?请说明理由。22(本小题满分12分)已知函数.(1)若,求的极值;(2)若,求正实数的取值范围.惠州市2021届高三第一次调研考试数学参考答案与评

7、分细则一、单项选择题:本题共10小题,每小题满分5分,共50分。题号12345678910答案ACABCDBDAB1.【解析】由题意可得,所以,故选A2.【解析】,故选C3.【解析】,故选A4.【解析】由已知得,故选B5.【解析】连接,则,可知是正三角形,故选C6.【解析】 由题知双曲线的一条渐近线方程为,则, ,故选D7.【解析】由题意可知该女子每日织布数呈等差数列,设为,首项,可得,解之得,故选B8.【解析】由,所以为奇函数,排除A,C;因为 的大于0的零点中,最小值为;又因为,故选D9.【解析】先从4个专家中选2个出来,看成1个专家有种选法,再将捆绑后的专家分别派到3 个县区,共有种分法

8、,故总共有种派法。 其中甲、乙两位专家派遣至同一县区有种,其概率为. 故选A10.【解析】 由“局部奇函数”可得: ,整理可得:,考虑到,从而可将视为整体,方程转化为:,利用换元设(),则问题转化为只需让方程存在大于等于2的解即可,故分一个解和两个解来进行分类讨论。设(1)若方程有一个解,则有相切(切点大于等于2)或相交(其中交点在两侧),即或,解得:或(2)若方程有两解,则,解得:,综上所述:,答案B二、多项选择题:本题共2小题,每小题满分5分,共10分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得3分,有选错的得0分。11题选项12题选项可得分数全部正确BCDA

9、C5分部分正确B、C、D、BC、BD、CDA、C3分11.【解析】不等式恒成立的条件是,故A不正确;当a为负数时,不等式成立故B正确;由基本不等式可知C正确;对于,当且仅当,即,时取等号,故D正确故选:BCD12.【解析】若,且,即两平面的法向量平行,则成立,故A正确; 若,且,则与互相平行或相交或异面,故B错误;若相交,且,即两平面的法向量相交,则相交成立,故C正确; 若,且,则与平行或相交,故D错误;故选:AC二、填空题(本题共4小题,每小题5分,共20分,其中16题第一个空3分,第二个空2分。)13. 14. 280 15. 9 16. (3分),(2分)【注:14题结果写成不扣分】13

10、.【解析】 因此切线方程为.14.【解析】展开式的第项为,故令,即,所以的系数为15.【解析】抛物线的焦点,准线为,由M到焦点的距离为10,可知M到准线的距离也为10,故到M到的距离是9.16.【解析】法1:依题意作出图形,如图所示,则sinDBCsinABC,由题意知ABAC4,BCBD2,则sinABC,cosABC,所以SBDCBCBDsinDBC22,F2ACBED因为cosDBCcosABC, 所以CD,由余弦定理,得cosBDC.答案:;法2:如图,作AE垂直BC,作DF垂直BC,由勾股及相似比可得面积。由二倍角公式可得目标角度的余弦值。三、解答题(本大题共6小题,共70分解答应写

11、出文字说明、演算步骤或证明过程)17.(本小题满分10分)【解析】(1)法1:, .1分,成等比数列,化简得,.2分又因为 .3分【注:无此步骤,本得分点不得分】且由可得,.4分【注:只要算出即可给分】数列的通项公式是 .5分法2:,成等比数列, .1分,化简得, .2分又因为 .3分【注:无此步骤,本得分点不得分】得 .4分数列的通项公式是 .5分(2)由(1)得, .7分 .8分 .9分 所以 .10分18.(本小题满分12分)【解析】(1)法1:由已知bcosA(2ca)cosB,及正弦定理可得: 2sinCcosBsinBcosAsinAcos B .1分 2sinCcosBsin(A

12、B), .2分 因为ABC,所以2sinCcosBsinC, .3分因为sinC0, .4分【注:无此步骤,本得分点不得分】所以cosB. .5分因为0B, .6分【注:无此步骤,本得分点不得分】所以B. .7分法2:由已知bcosA(2ca)cosB,及余弦定理可得:.1分化简得.2分余弦定理可得.3分因为0,.4分【注:无此步骤,本得分点不得分】所以cosB. .5分因为0B,.6分【注:无此步骤,本得分点不得分】所以B. .7分(2)由SABCacsinB .8分【注:单独写出此步骤,即可得1分】得4c,所以c1. .9分又由余弦定理:,.10分【注:单独写出此步骤,即可得1分】得, .

13、11分故ABC的周长为5. .12分【注:第二问也可过A作BC边上的高,然后通过勾股定理求得边长,此过程按踩分点给分即可】19.(本小题满分12分)CEDBAFxyz【解析】(1)证明:因为平面,面所以.1分因为是正方形,所以 .2分又, 面,面.3分【注:此步骤未写全3个条件,本得分点不得分】故平面 .4分(2)法1:【向量法】因为两两垂直,建立空间直角坐标系如图所示.5分因为平面,且与平面所成角为,即,.6分所以由已知,可得 .7分则 所以 .8分设平面的法向量为,则,即令,则 .9分因为平面,所以为平面的法向量, .10分所以 .11分因为二面角为锐角,所以二面角的余弦值为 .12分NC

14、EDBAFGHMPQ法2:【几何法】如图,G、P分别为线段ED、EB的三等分点,M、N分别为线段EB、DB的中点,MNGP=H,连结FH,AF/NH,且AF=NH,所以FH/AN,且FH= AN所以FH面BDE,过F作FQEB垂足为Q,连结HQ由三垂线定理知,FQH为二面角的平面角。.6分由已知可得,所以 .7分因为平面,且与平面所成角为,即,.8分PHQ为直角三角形,QPH=60,所以,.9分由勾股定理得,得,.10分所以cosFQH.11分所以二面角的余弦值为 .12分20.(本小题满分12分)【解析】(1)法1:【待定系数法】由题意可得,.1分又因为点在椭圆上得 .2分联立解得,. .3

15、分所以椭圆的方程为.4分 法2:【定义法】设另一个焦点为,则为直角三角形,由勾股定理得,.1分所以,即,.2分由得 .3分所以椭圆的方程为 .4分 (2)当直线为非轴时,可设直线的方程为,与椭圆联立,整理得. .5分 由设,定点 (且则由韦达定理可得,. .6分直线与直线恰关于轴对称,等价于的斜率互为相反数. 所以,即得. .7分又,得,所以,整理得. .8分从而可得, 即, .9分所以当,即时,直线与直线恰关于轴对称成立. .10分特别地,当直线为轴时,也符合题意. .11分综上,存在轴上的定点,满足直线与直线恰关于轴对称.12分21.(本小题满分12分)【解析】(1)6名密切接触者中随机抽

16、取3名共有种方法,1分抽取3名中有感染者的抽法共有种方法,2分所以抽到感染者的概率 3分(2)(i)按逐一化验法,的可能取值是1,2,3,4,5, 4分, , , ,【表示第5次化验呈阳性或前5次化验都呈阴性(即不检验可确定第6个样本为阳性)】分布列如下:123455分【注:无列表不给分】所以 6分(ii)平均分组混合化验,6个样本可按平均分成2组,或者按分成3组。如果按分2组,所需化验次数为,的可能取值是2,3, ,7分分布列如下:23 8分如果按分3组,所需化验次数为,的可能取值是2,3, ,9分分布列如下:23 10分【参考回答1】:因为, 11分所以我认为平均分组混合化验法较好,按或分

17、组进行化验均可。12分【参考回答2】:因为,按分2组比按分3组所需硬件资源及操作程序更少, 11分所以我认为平均分组混合化验法且按分2组更好。12分【注】第三问属于开放性问题,以上仅为参考答案,能给出理由并作出合理判断就可给分。请注意后续的开放题考查评分可能涉及满意原则(如回答1)及加分原则(如回答2)。22. (本小题满分12分)【解析】(1)因为,则函数定义域为,1分若,则,在单调递减;2分若,则,单调递增, 3分4分【注:无列表不得分】极小所以当时,的极小值为,无极大值;5分(2)法1: ,则, 6分由(1)知,当时,在单调递减,在单调递增,所以,所以, 7分令, 8分令 , 恒成立,所以 所以恒成立, 9分所以;则 10分所以,当且仅当时等号成立。 11分所以,正实数的取值范围为.12分法2:由(1)知,当时,在单调递减,在单调递增,所以,所以,6分因为,所以,所以,(*),7分令,则,因为,所以,若,则,当时,则,所以在单调递增,当时,则,所以在单调递减,所以,8分又因为,且和都在处取得最值,所以当,解得,所以, 9分若,则,当时,在单调递减;当时,在单调递增; 当时,在单调递减, 10分所以,与(*)矛盾,不符合题意,舍去. 11分综上,正实数的取值范围为.12分数学试题 第 22 页,共 22 页

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3