1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,B=C=90,M是BC的中点,DM平分ADC,且ADC=110
2、,则MAB=()A30B35C45D602、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个3、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD4、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D15、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD二、多选题(5小题,每小题4分,共计20分)1、在下列正多边形组合中,能铺满地面的
3、是()A正八边形和正方形B正五边形和正八边形C正六边形和正三角形D正三角形和正方形2、如图,四边形ABCD的对角线AC、BD相交于点O,ABOADO下列结论中正确的结论是() 线 封 密 内 号学级年名姓 线 封 密 外 AACBDBCB=CDCABCADCDDA=DC3、以下列数字为长度的各组线段中,能构成三角形的有()A1,2,3B2,3,4C3,4,5D4,5,64、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米5、如图,若判断,则需要添加的条件是()A,B,C,D,第卷(非选择题 65分)三、填空题
4、(5小题,每小题5分,共计25分)1、如图,是一个中心对称图形,A为对称中心,若,则_,_2、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_3、在ABC中,将B、C按如图方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕若A80,则MGE_4、在三角形的三条高中,位于三角形外的可能条数是_条5、从六边形的一个顶点出发,可以画出条对角线,它们将六边形分成个三角形边形没有对角线,则的值为_四、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点
5、F,BF与AC交于点C,BGE=ADE(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍2、如图,在ABC中,A=55,ABD=32,ACB=70,且CE平分ACB,求DEC的度数3、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN4、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA
6、,BC的关系并说明理由5、如图,AC,BD为四边形ABCD的对角线,ABC90,ABD+ADBACB,ADCBCD(1)求证:ADAC;(2)探求BAC与ACD之间的数量关系,并说明理由-参考答案-一、单选题1、B【解析】【分析】作MNAD于N,根据平行线的性质求出DAB,根据角平分线的判定定理得到MAB=DAB,计算即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 作MNAD于N,B=C=90,ABCD,DAB=180ADC=70,DM平分ADC,MNAD,MCCD,MN=MC,M是BC的中点,MC=MB,MN=MB,又MNAD,MBAB,MAB=DAB=35,故选B【考点】本题考
7、查了平行线的性质,角平分线的性质与判定,熟练掌握相关内容、正确添加辅助线是解题的关键.2、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述
8、,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”. 线 封 密 内 号学级年名姓 线 封 密 外 3、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键4、A【解析】【分析】根据三角形
9、中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键5、B【解析】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDBCA=6045=15,=180DACD=1809015=75, 故选:B【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键二、多选题1、ACD【解析】 线
10、封 密 内 号学级年名姓 线 封 密 外 【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360若能,则说明能铺满;反之,则说明不能铺满【详解】解:A、正方形的每个内角是90,正八边形的每个内角是135,由于902135360,故能铺满,符合题意;B、正五边形和正八边形内角分别为108、135,显然不能构成360的周角,故不能铺满,不合题意;C、正六边形和正三角形内角分别为120、60,由于604120360,故能铺满,符合题意;D、正三角形、正方形内角分别为60、90,由于603902360,故能铺满,符合题意故选:ACD【考点】本题考查了平面密铺的知识,几何图形
11、镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角2、ABC【解析】【分析】根据全等三角形的判定以及性质,对选项逐个判定即可【详解】解:,又,A选项正确,符合题意;在和中,C选项正确,符合题意;,B选项正确,符合题意;根据已知条件得不到,D选项错误,不符合题意;故选ABC【考点】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质以及垂直,根据全等三角形的判定与性质逐一分析四条结论的正误是解题的关键3、BCD【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可【详解】解:A不能组成三角形,该项不符合题意; B,该项符合题意;C,
12、该项符合题意;D,该项符合题意;故选:BCD【考点】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 4、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.5、BC【解析】【分析】已知公共角A,根据三角形全等的判定方法对选项依次判定即可;【详解】解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;B. 根据SAS判定ACDABE,故本选项正确;C. 根
13、据AAS判定ACDABE,故本选项正确;D. 不能判定ACDABE,故本选项错误;故选:B、C【考点】本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.三、填空题1、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合,【考点】本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键2、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得
14、出答案【详解】延长AC至E,使CE=BM,连接DE 线 封 密 内 号学级年名姓 线 封 密 外 BD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=ACB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本
15、题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键3、80【解析】【分析】由折叠的性质可知:BMGB,CEGC,根据三角形的内角和为180,可求出BC的度数,进而得到MGBEGC的度数,问题得解【详解】解:线段MN、EF为折痕,BMGB,CEGC,A80,BC18080100,MGBEGCBC100,MGE18010080,故答案为:80【考点】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到MGBEGC的度数4、0或2 线 封 密 内 号学级年名姓 线 封
16、 密 外 【解析】【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外【详解】解:当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握5、10【解析】【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n-3,分成的三角形数是n-2,三角形没有对角线,依此求出m、n、k的值,再代入计算即可
17、求解【详解】解:对角线的数量m=6-3=3条;分成的三角形的数量为n=6-2=4个;k=3时,多边形没有对角线;m+n+k=3+4+3=10故答案为:10【考点】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3,分成的三角形数是n-2四、解答题1、(1)证明见解析;(2)ACD、ABE、BCE、BHG【解析】【详解】分析:(1)由ACBD、BFCD知ADE+DAE=CGF+GCF,根据BGE=ADE=CGF得出DAE=GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE
18、=2a,据此知SADC=2a2=2SADE,证ADEBGE得BE=AE=2a,再分别求出SABE、SACE、SBHG,从而得出答案详解:(1)BGE=ADE,BGE=CGF,ADE=CGF,ACBD、BFCD,ADE+DAE=CGF+GCF,DAE=GCF,AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,SADE=AEDE=2aa=a2,BH是ABE的中线,AH=HE=a,AD=CD、ACBD,CE=AE=2a, 线 封 密 内 号学级年名姓 线 封 密 外 则SADC=ACDE=(2a+2a)a=2a2=2SADE;在ADE和BGE中,ADEBGE(ASA),BE=AE=
19、2a,SABE=AEBE=(2a)2a=2a2,SACE=CEBE=(2a)2a=2a2,SBHG=HGBE=(a+a)2a=2a2,综上,面积等于ADE面积的2倍的三角形有ACD、ABE、BCE、BHG点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质2、DEC =58【解析】【分析】先根据A=55,ACB=70得出ABC的度数,再由ABD=32得出CBD的度数,根据CE平分ACB得出BCE的度数,最后用三角形的外角即可得出结论【详解】在ABC中,A=55,ACB=70,ABC=55,ABD=32,CBD=ABC-ABD=23,CE平分A
20、CB,BCE=ACB=35,在BCE中,DEC=CBD+BCE=58【考点】此题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.3、见解析.【解析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本
21、题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.4、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC5、(1)见解析;(2)BAC2ACD;理由见解析.【解析】【分析】(1)利用直角三角形的两锐角互余、三角形的内角和定理、以及角的和差即可得;(2)先根据直角三角形的两锐角互余可得,再由题(1)的结论和推出,联立化简求解即可得.【详解】(1)在中, 线 封 密 内 号学级年名姓 线 封 密 外 在中,即;(2),理由如下:由题(1)知,.【考点】本题考查了直角三角形的两锐角互余、三角形的内角和定理、以及角的和差,熟记三角形的内角和定理、直角三角形的性质是解题关键.
Copyright@ 2020-2024 m.ketangku.com网站版权所有