ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:142.42KB ,
资源ID:697065      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-697065-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年人教版八年级数学上册第十四章整式的乘法与因式分解综合测试试题(含答案解析).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年人教版八年级数学上册第十四章整式的乘法与因式分解综合测试试题(含答案解析).docx

1、八年级数学上册第十四章整式的乘法与因式分解综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知被除式是x3+3x21,商式是x,余式是1,则除式是()Ax2+3x1Bx2+3xCx21Dx23x+

2、12、若,则的值为()A6B5C4D33、计算:()AaBCD4、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分);A40分B60分C80分D100分5、若(bc)24(1b)(c1),则b+c的值是()A1B0C1D26、关于的多项式的最小值为()ABCD7、若,则的值分别为()A9,5B3,5C5,3D6,128、下列各式变形中,是因式分解的是()ABCD9、化简(a2)2a(5a)的结果是()Aa4B3a4C5a4Da2410、下列运算正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x,y满足方程组则

3、的值为_.2、因式分解:_3、多项式2x4(a+1)x3+(b2)x23x1,不含x3项和x2项,则ab_4、如果,那么代数式的值为_5、边长为m、n的长方形的周长为14,面积为10,则的值为_三、解答题(5小题,每小题10分,共计50分)1、(1)已知a+b=3,a2+b2=5,求ab的值;(2)若3m=8,3n=2,求32m-3n+1的值2、化简:(x3)2x2x+x3(x)2(x2)3、(1)化简: (2)解不等式组: 4、先化简,再求值:,其中5、分解因式(1)2x2y24y3z;(2)4x216y2-参考答案-一、单选题1、B【解析】【详解】分析:按照“被除式、除式、商式和余式间的关

4、系”进行分析解答即可.详解:由题意可得,除式为:=.故选B.点睛:熟知“被除式、除式、商式和余式间的关系:被除式=除式商式+余式”是解答本题的关键.2、B【解析】【分析】根据同底数幂的乘法法则结合有理数的乘方运算进行计算【详解】解:,且故选:B【考点】本题考查同底数幂的乘法计算,掌握计算法则正确计算是解题关键3、D【解析】【分析】利用同底数幂的乘法法则运算【详解】解:,故选:D【考点】本题考查了同底数幂的乘法运算,解题的关键是掌握同底数幂相乘,底数不变,指数相加4、A【解析】【分析】根据提公因式法及公式法分解即可【详解】,故该项正确;,故该项错误;,故该项错误;,故该项错误;,故该项正确;正确

5、的有:与共2道题,得40分,故选:A【考点】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键5、D【解析】【分析】先将等式的右边展开并移项到左边,然后再根据完全平方公式可以分解因式,即可得到b+c的值【详解】解:(bc)24(1b)(c1),b22bc+c24c44bc+4b,(b2+2bc+c2)4(b+c)+40,(b+c)24(b+c)+40,(b+c2)20,b+c2,故选:D【考点】本题考查因式分解的应用,掌握运用完全平方公式进行因式分解是解答本题的关键.6、A【解析】【分析】利用完

6、全平方公式对代数式变形,再运用非负性求解即可【详解】解:原式,原式1,原式的最小值为1,故选A【考点】本题考查完全平方公式的变形,以及平方的非负性,灵活运用公式是关键7、B【解析】【分析】根据积的乘方法则展开得出a3mb3n=a9b15,推出3m=9,3n=15,求出m、n即可【详解】解:(ambn)3=a9b15,a3mb3n=a9b15,3m=9,3n=15,m=3,n=5,故选B8、D【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积

7、的形式,故C错误;D、是因式分解,故D正确;故选D【考点】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式9、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)=a+4.故选A.【考点】本题考查整式的混合运算,完全平方公式,关键是掌握完全平方公式.10、D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【考点】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数

8、幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键二、填空题1、【解析】【分析】方程组中第二个方程整理后求出x+y的值,原式利用平方差公式变形,将各自的值代入计算即可求出值【详解】解:由得,因为,所以.故答案为【考点】此题考查了二元一次方程组的解,以及平方差公式,将原式进行适当的变形是解本题的关键2、【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式故答案为:【考点】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键3、2【解析】【分析】根据题意只要使含x3项和x2项的系数为0即可求解【详解】解:多项式2x4(a+1)x3+(b2)x

9、23x1,不含x2、x3项,a+10,b20,解得a1,b2ab2故答案为:2【考点】本题主要考查多项式的系数,关键是根据题意列出式子计算求解即可4、2019【解析】【分析】把展开得到,直接带入已知式子求解即可【详解】由题可得,把代入上式的:原式=2020-1=2019故答案为2019【考点】本题主要考查了代数式求值计算,准确应用完全平方公式展开,再进行整体代入法求值是关键5、290【解析】【分析】根据题意可知mn7,mn10,再由因式分解法将多项式进行分解后,可求出答案【详解】解:由题意可知:mn7,mn10,原式mn(m2n2)mn(m+n)2-2mn=10(72-210)=1029290

10、故答案为:290【考点】本题考查代数式求值,解题的关键是熟练运用因式分解法以及完全平方公式的变形公式三、解答题1、(1)2;(2)24;【解析】【分析】(1)运用完全平方公式求解;(2)利用同底数幂的乘除法,幂的乘方与积的乘方化成含有3m,3n的式子求解【详解】(1)(a+b)2-(a2+b2)2=9-52=2;(2)3m=8,3n=232m-3n+1=(3m)2(3n)33=6483=24【考点】本题主要考查了完全平方公式,同底数幂的乘除法,幂的乘方与积的乘方,解题的关键是熟记法则和公式求解.2、x3x7【解析】【分析】直接利用整式运算法则计算得出答案【详解】(x3)2x2x+x3(x)2(

11、x2)=x6x2x-x3x2x2=x6-2-1-x3+2+2= x3x7【考点】本题主要考查整式的混合运算,正确运用整式运算法则是解答题目的关键.3、(1)4-x;(2)x-2【解析】【分析】(1)根据平方差公式和合并同类项的性质计算,即可得到答案;(2)根据一元一次不等式组的性质计算,即可得到答案【详解】(1) ;(2)由得:;由得:的解集为:【考点】本题考查了整式运算、一元一次不等式组的知识;解题的关键是熟练掌握平方差公式、一元一次不等式组的性质,从而完成求解4、2【解析】【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案【详解】解:原式,当时,原式【考点】考核知识点:整式化简取值.掌握整式乘法公式是关键.5、(1)2y2(x22yz);(2)4(x+2y)(x2y)【解析】【分析】(1)直接提取公因式2y2,即可分解因式;(2)首先提取公因式4,再利用平方差公式分解因式即可【详解】解:(1)2x2y24y3z2y2(x22yz);(2)4x216y24(x24y2)4(x+2y)(x2y)【考点】本题主要考查因式分解,掌握提公因式法、公式法分解因式是解题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1