1、人教版八年级数学上册第十五章分式专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程的解是()ABCD2、方程的解为()Ax=1Bx=0Cx=Dx=13、俗话说:“水滴石穿”,水滴不断地落在一块石
2、头的同一个位置,经过若干年后,石头上形成了一个深度为的小洞,数据用科学记数法表示为()ABCD4、化简的结果为,则()A4B3C2D15、若代数式有意义,则实数的取值范围是()ABCD6、若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m7、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D108、计算的结果是()ABC2D29、有一段全长为800米的公路,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加10%,结果提前3天完成这一任务,设原计划每天整改x米,则下列方程正确的是()ABCD10、某农场挖一条
3、480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为_2、如果分式值为零,那么x_3、化简:(1_4、化简的结果是_5、已知,则的值为_三、解答题(5小题,每小题10分,共计50分)1、(1)当x为何整数时,分式的值为正整数?(2)已知函数自变量取值范围为整数,求y的最大、最
4、小值2、先化简再求值:,其中3、若,求的值4、已知ab2018,求代数式的值5、先约分,再求值:其中-参考答案-一、单选题1、D【解析】【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解【详解】解:方程可化简为经检验是原方程的解故选D【考点】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键2、D【解析】【详解】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D点睛:此题考查了解分式方程,利用了转化的思想,解
5、分式方程注意要检验3、A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故选:A【考点】本题考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、A【解析】【分析】根据分式的运算法则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则5、D【解析】【分析】分式有意义的条件是分母不为【详解】代数式有意义,故选D【考点】本
6、题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件6、B【解析】【分析】先去分母解方程,根据方程的解为正数列不等式即可【详解】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故选:B【考点】本题考查含参数的分式方程解法,不等式,分式有意义条件,解题的关键是掌握含参数的分式方程解法,不等式,分式有意义条件7、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分
7、式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键8、B【解析】【分析】根据负整数指数幂运算即可得【详解】,故选:B【考点】本题考查了负整数指数幂,熟记负整数指数幂运算法则是解题关键9、C【解析】【分析】用x表示出计划和实际完成的时间,再结合实际比计划提前3天完成任务作为等量关系列方程即可【详解】实际每天整改米,则实际完成时间天,计划完成时间天,实际比计划提前3天完成任务得方程故选C【考点】本题考查了分式方程的应用列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等
8、关系,这是列方程的依据而难点则在于对题目已知条件的分析,找出等量关系,因此需围绕题中关键词进行分析10、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程二、填空题1、【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可【详解】根据题意可知乙每小
9、时采样(x-10)人,根据题意,得故答案为:【考点】本题主要考查了列分式方程,确定等量关系是列方程的关键2、1【解析】【分析】直接利用分式的值为零在分子为零进而得出答案【详解】解:分式值为零,x10,解得:x1故答案为:1【考点】此题主要考查了分式的值为零的条件,正确把握定义是解题关键3、【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果【详解】(1+)=,故答案为.【考点】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法4、【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式,故答案是:【考点】本题考查了分式的乘除法,解题的关键是
10、熟练掌握运算法则5、【解析】【分析】由已知得到,整体代入求解即可【详解】解:由已知,得:,即,故答案为:【考点】本题考查了分式的化简求值,解题的关键是将已知正确变形三、解答题1、(1);(2)y最大为3,最小为1【解析】【分析】(1)根据题意2x+1=1或2或4时,分式的值为正整数,再取x为整数时即可;(2)把函数整理成的形式,要使函数y的值为整数,则x2=,据此即可求解【详解】(1)要使分式的值为正整数,则2x+1=1或2或4,解得:x=0或或,x为整数,x=0,即x=0时,分式的值为正整数;(2),且自变量取值范围为x2,要使函数y的值为整数,则x2=,当x=3时,函数y的最大值为3,当x
11、=1时,函数y的最小值为1【考点】本题考查了分式有意义的条件,求分式的值,函数自变量的取值范围问题等知识,解答本题的关键是明确题意,找出所求问题需要的条件2、,【解析】【分析】利用分式的加减法和乘除法对分式进行计算和化简,再把x2022代入计算即可得出结果【详解】解:当时,原式【考点】本题考查了分式的化简求值,掌握分式的加减法法则和乘除法法则是解题的关键3、0【解析】【分析】设,则,然后计算即可得到答案【详解】解:,设,=;【考点】本题考查了比例的性质,求代数式的值,解题的关键是熟练掌握比例的性质进行解题4、4036【解析】【详解】试题分析:根据分式的乘除法,先对分子分母分解因式,然后把除法化为乘法,再约分,然后代入求值.试题解析:原式(ab)(ab)2(ab)ab2 018,原式22 0184 036.5、【解析】【分析】先把分式的分子分母分解因式,约分后把a、b的值代入即可求出答案【详解】解:原式= = 当时原式=【考点】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型
Copyright@ 2020-2024 m.ketangku.com网站版权所有