1、八年级数学上册第十二章全等三角形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F若ACBD,ABED,BCBE,则ACB等于()AED
2、BBBEDCAFBD2ABF2、如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是()A甲B乙C丙D丁3、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D4、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么OABOCD理由是()A边角边B角边角C边边边D角角边5、下列各组中的两个图形属于全等图形的是()ABCD6、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将
3、其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A第1块B第2块 C第3块D第4块7、如图,B,C,E,F四点在一条直线上,下列条件能判定ABC与DEF全等的是()AABDE,A=D,BE=CFBABDE,AB=DE,AC=DFCABDE,AC=DF,BE=CFDABDE,ACDF,A=D8、如图,BE90,ABDE,ACDF,则ABCDEF的理由是()ASASBASACAASDHL9、下列各组的两个图形属于全等图形的是()ABCD10、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题
4、4分,共计20分)1、如图,ABC中,ACB=90,AC=12,BC=16点P从A点出发沿ACB路径向终点运动,终点为B点;点Q从B点出发沿BCA路径向终点运动,终点为A点点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PEl于E,QFl于F若要PEC与QFC全等,则点P的运动时间为_2、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为_3、如图,BEAC,垂足为D,且ADCD,BDED若ABC54,则
5、E_4、如图,在与中,若,则的度数为_5、如图,图形的各个顶点都在33正方形网格的格点上则_三、解答题(5小题,每小题10分,共计50分)1、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由2、(1)如图,在中,按以下步骤作图(保留作图痕迹):以点为圆心,任意长为半径作弧,分别交、于点D、E分别以点D、E为圆心,大于的长为半径作弧,两弧交于点作射线交于点则是的_线(2)如果,的面积为18则的面积为_3、如图,垂足分别为与相交于点,(1)求证:;(2)在不添加任何辅助线的情况下,请直接写出图中四对全
6、等的三角形4、如图,是边长为2的等边三角形,是顶角为120的等腰三角形,以点为顶点作,点、分别在、上(1)如图,当时,则的周长为_;(2)如图,求证:5、如图,已知射线AB与直线CD交于点O,OF平分BOC,OGOF于O,AEOF,且A=30(1)求DOF的度数;(2)试说明OD平分AOG-参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定与性质可得,再根据三角形外角的性质即可求得答案【详解】解:在和中,是的外角,故选:C【考点】本题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解决本题的关键2、B【解析】【分析】根据全等三角形的判定定理逐判定即
7、可【详解】解:AABC和甲所示三角形只有一边一角对应相等,无法判定它们全等,故本选项不符合题意;BABC和乙所示三角形有两边及其夹角对应相等,根据SAS可判定它们全等,故本选项符合题意;CABC和丙所示三角形有两边一角相等,但不是对应的两边一角,无法判定它们全等,故本选项不符合题意;DABC和丁所示三角形有两角对应相等,有一边相等,但相等边不是两角的夹边,所以两角一边不是对应相等,无法判定它们全等,故本选项不符合题意;故选:B3、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB
8、90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键4、A【解析】【详解】解:根据SAS得:OABODC故选A.5、B【解析】【分析】根据全等图形的定义,逐一判断选项,即可【详解】A.两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完
9、全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键6、B【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的故选:B【考点】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS注意:AAA、SSA不
10、能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角7、A【解析】【分析】根据全等三角形的判定条件逐一判断即可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键8、D【解析】【详解】在RtABC与RtDEF中,RtABCRtDEF(HL),故选D9、D【解析】【分析】根据全等图形的定
11、义,逐一判断选项,即可【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键10、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主
12、要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.二、填空题1、1或3.5或12【解析】【分析】分4种情况求解:P在AC上,Q在BC上,推出方程6-t=8-3t,P、Q都在AC上,此时P、Q重合,得到方程6-t=3t-8,Q在AC上,P在BC上,Q在AC时,此时不存在,当Q到A点,与A重合,P在BC上时【详解】解:PEC与QFC全等,斜边CP=CQ,有四种情况:P在AC上,Q在BC上,CP=12-2t,CQ=16-6t,12-2t=16-6t,t=1;P、Q都在AC上,此时P、Q重合,CP=12-2t=6t-16,t=3.5;P到BC上,Q在AC时,此时不存在;理由
13、是:286=,122=6,即Q在AC上运动时,P点也在AC上运动;当Q到A点(和A重合),P在BC上时,CP=CQ=AC=12CP=12-2t,2t-12=12,t=12符合题意;答:点P运动1或3.5或12时,PEC与QFC全等【考点】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键2、或【解析】【分析】以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB
14、于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则为作或的角平分线,所以或故答案为:或【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏3、27【解析】【详解】BEAC,AD=CD,AB=CB,即ABC为等腰三角形,BD平分ABC,即ABE=CBE=ABC=27,在ABD和CED中, ,ABDCED(SAS),E=ABE=27故答案是:274、40【解析】【分析】先利用HL定理证明RtABCRtDEF,得出D的度数,再根据直角三角形两锐角互余即可得出的度数【详解】解:在Rt
15、ABC与RtDEF中,B=E=90,AC=DF,AB=DE,RtABCRtDEF(HL)D=A=50,DFE=90-D=90-50=40故答案为:40【考点】此题主要考查直角三角形全等的HL定理理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键5、45或45度【解析】【分析】通过证明三角形全等得出1=3,再根据1+2=3+2 即可得出答案【详解】解:如图所示,由题意得,在RtABC和RtEFC中, RtABCRtEFC(SAS)3=12+3=901+2=3+2=90故答案为:45【考点】本题主要考查了全等三角形的判定和性质,由证明三角形全等得出1=3是解题的关键三、解答题1、(1)证明
16、见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC2、(1)角平分;(2)27【解析】【分析】(1)根据尺规作图要求,按给定的步骤与作法画图即可;(2)根据角分线性质可
17、知,两三角形的AB与BC边上的高相等,则得面积比为底的比,依此列式求解即可【详解】解:(1)如图所示,BG即为所求;故答案为:角平分;(2)如图,作GMAB于M,作GNBC于N,由(1)得BG为ABC的角平分线,GM=GN, ,解得:故答案为:27【考点】本题考查尺规作图,角平分线性质,三角形面积;掌握尺规作图步骤与要求,根据角平分线性质得出两三角形的高相等,则面积比等于底的比是解题关键3、(1)见解析;(2),【解析】【分析】(1)根据垂直的定义得出BDF=CEF=90,根据AAS可以推出BDFCEF,根据全等三角形的性质得出即可;(2)根据全等三角形的性质得出B=C,BD=CE,DF=EF
18、,求出AB=AC,再根据全等三角形的判定定理推出ADFAEF,ABFACF,ACDABE【详解】证明:, 在和中(AAS) ,理由是:由(1)知:BFDCFE,所以DF=EF,B=C,BD=CE,根据HL可以推出ADFAEF,所以AD=AE,BD=CE,AB=AC,根据SAS可以推出ABFACF,根据HL可以推出ACDABE【考点】本题考查了全等三角形的性质和判定,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL4、(1)4;(2)见解析【解析】【分析】(1)首先证明BDMCDN,进而得出DMN是等边三角形,BDM=
19、CDN=30,NC=BM=DM=MN,即可解决问题;(2)延长至点,使得,连接,首先证明,再证明,得出,进而得出结果即可【详解】解:(1)是等边三角形,是等边三角形,则,是顶角的等腰三角形,在和中,是等边三角形,的周长(2)如图,延长至点,使得,连接,是等边三角形,是顶角的等腰三角形,在和中,在和中,又,【考点】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键5、(1)150;(2)证明见解析【解析】【分析】(1)根据两直线平行,同位角相等可得,再根据角平分线的定义求出,然后根据平角等于列式进行计算即可得解;(2)先求出,再根据对顶角相等求出,然后根据角平分线的定义即可得解【详解】解:(1),平分,;(2),平分【考点】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键