1、人教版九年级数学上册第二十二章二次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da12、为了美观,在加工太阳镜时将下半
2、部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,最低点 在轴上,高 ,则右轮廓所在抛物线的解析式为()ABCD3、下列关于二次函数的说法,正确的是()A对称轴是直线B当时有最小值C顶点坐标是D当时,y随x的增大而减少4、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD5、抛物线经过点、,且与y轴交于点,则当时,y的值为()ABCD56、二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是()ABCD7、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD8、二次函数y=ax2+bx+c的图象如图所示,则该二次
3、函数的顶点坐标为()A(1,3)B(0,1)C(0,3)D(2,1)9、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则10、已知二次函数yax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果抛物线的最高点是坐标轴的原点,那么的取值范围是_2、二
4、次函数yax2+bx+c的图象如图所示,以下结论:abc0;4acb2;2a+b0;其顶点坐标为(,2);当x时,y随x的增大而减小;a+b+c0中,正确的有_(只填序号)3、若正方体的棱长为,表面积为,则与的关系式为_4、如图抛物线与轴相交于点,与轴相交于点,则的面积为_5、用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_m2.三、解答题(5小题,每小题10分,共计50分)1、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与
5、抛物线及直线分别交于点、直线与直线交于点,当时,求值2、已知抛物线C:yax24(m1)x3m26m2(1)当a1,m0时,求抛物线C与x轴的交点个数;(2)当m0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m0时,过点(m,m22m2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t2,且点A在第三象限以线段AB为直径作圆,设该圆的面积为S,求S的取值范围3、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每
6、个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?4、已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标5、在平面直角坐标系中,已知点,直线经过点抛物线恰好经过三点中的两点判断点是否在直线上并说明理由;求的值;平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值-参考答案-一、单选题1、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故
7、选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键2、B【解析】【分析】利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式【详解】高CH=1cm,BD=2cm,且B、D关于y轴对称,D点坐标为(1,1),ABx轴,AB=4cm,最低点C在x轴上,AB关于直线CH对称,左边抛物线的顶点C的坐标为(-3,0),右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式
8、为y=a(x-3)2,把D(1,1)代入得1=a(1-3)2,解得a=,右边抛物线的解析式为y=(x-3)2,故选:B【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题3、B【解析】【分析】根据二次函数的性质对各选项分析判断后利用排除法求解【详解】解:由二次函数可知对称轴是直线,故选项A错误,不符合题意;由二次函数可知开口向上,当时有最小值,故选项B正确,符合题意;由二次函数可知顶点坐标为(3,-5),故选项C错误,不符合题意;由二次函数可知顶点坐标为(3,-5),对称轴是直
9、线,当x3时,y随x的增大而减小,故选项D错误,不符合题意;故选:B【考点】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性4、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C
10、. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键5、A【解析】【分析】先利用待定系数法求出抛物线解析式,再求函数值即可【详解】解:抛物线经过点、,且与y轴交于点,解方程组得,抛物线解析式为,当时,故选择A【考点】本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值
11、求法是解题关键6、A【解析】【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A选项符合题意故选A【考点】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数的图像恒过定点,本题蕴含了数形结合的思想方法等7、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2+bx+c不是二次函数,故选项C不合题意;D、不
12、是二次函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键8、D【解析】【分析】根据抛物线与轴的两个交点坐标确定对称轴后即可确定顶点坐标【详解】解:观察图象发现图象与轴交于点和,对称轴为,顶点坐标为,故选:D【考点】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大9、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点
13、,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键10、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行判断;利用二次函数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小,抛物线的开口向下,a0,故A正确;x1时,y3,x4时,y3,二次函数yax2+bx+c的函数值为2时,1x0或3x4,即方程ax2+bx+
14、c2的负根在1与0之间,正根在3与4之间,故B错误;抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2),5,y1y2,故D正确;故选:B【考点】本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次函数图象与系数的关系,准确计算是解题的关键二、填空题1、【解析】【分析】根据函数图像有最高点可得出开口向下,即可得出答案;【详解】抛物线的最高点是坐标轴的原点,抛物线开口向下,m+10,故答案是【考点】本题主要考查了根据二次函数的开口方向求参数,准确分析判断是解题的关键2、
15、【解析】【分析】根据图象可判断,由x=1时,y0,可判断【详解】由图象可得,a0,c0,b0,=b24ac0,对称轴为x=,abc0,4acb2,当时,y随x的增大而减小故正确,2a+b0,故正确,由图象可得顶点纵坐标小于2,则错误,当x=1时,y=a+b+c0,故错误故答案为:【考点】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定3、【解析】【分析】正方体有6个面,每一个面都是边长为x的正方形,这6个正方形的面积和就是该正方体的表面积【详解】解:正方体有6个面,每一个面都是边长为x的正方形,表面
16、积故答案为:【考点】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键4、3【解析】【分析】根据抛物线y=-x2-x+,可以求得该抛物线与x轴和y轴的交点,从而可以得到点A、B、C的坐标,然后即可得到AB和OC的长,从而可以求得ABC的面积【详解】解:抛物线y=-x2-x+,当y=0时,x1=-3,x2=1,当x=0时,y=,点A的坐标为(-3,0),点B的坐标为(1,0),点C的坐标为(0,),AB=1-(-3)=1+3=4,OC=,ABC的面积为:ABOC=故答案为:3【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是求出点A
17、、B、C的坐标,利用数形结合的思想解答5、112.5【解析】【分析】设矩形的长为xm,则宽为m,根据矩形的面积公式得出函数解析式,继而将其配方成顶点式,由x的取值范围结合函数性质可得最值【详解】设矩形的长为xm,则宽为m,菜园的面积S=x=-x2+15x=-(x-15)2+,(0x20).当x15时,S随x的增大而增大,当x=15时,S最大值=m2,故答案为【考点】本题主要考查二次函数的实际应用,根据题意列出函数解析式是解题的根本,由自变量x的取值范围结合二次函数的性质求函数解析式是解题的关键三、解答题1、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的
18、解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.2、(1)2个;(2)不
19、能,见解析;(3)S5【解析】【分析】(1)由题意可知当a1,m0时,抛物线的表达式为:yx2+4x+2,80,故C与x轴的交点个数为2;(2)根据题意假设点C在第四象限,则0,且+20,即可求解;(3)由题意可知抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+1时,mt+3,点B(t+2,t2+4t+3);点A在第三象限,即t0且t210,AB222+(4t+4)216(t+1)2+4,即可求解【详解】解:(1)当a1,m0时,抛物线的表达式为:yx2+4x+2,42-412=80,故C与x轴
20、的交点个数为2个;(2)当m0时,判断抛物线C的顶点为:(,+2),假设点C在第四象限,则0,且+20,解得:0且1,故a无解,故顶点不能落在第四象限;(3)将点(m,m22m+2)代入抛物线表达式并整理得:(a2)m20,m0,故a2;则抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+2时,mt+3,点B(t+2,t2+4t+3);而点A在第三象限,即t0且t210,解得:1t0;yByA4t+40,故点B在点A的右上方,AB222+(4t+4)216(t+1)2+4,1t0时,4AB220;
21、S()2,故S5【考点】本题考查的是二次函数综合运用,涉及到一次函数的性质、解不等式、圆的基本知识等,综合性强,弄清题意,正确运用相关知识是解题的关键3、(1)y-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x21400x45000,w1
22、0(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【考点】本题考查的是二次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式4、(1);(2)1;点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;根据直线PQ的解析式,设点A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解即可.【详解】解:(1)将两点分别代入,得解得所以抛物线的解析式是(2)如图2,抛物线的对
23、称轴是y轴,当点A与点重合时,作于H是等腰直角三角形,和也是等腰直角三角形,点C到抛物线的对称轴的距离等于1如图3,设直线PQ的解析式为y=kx+b,由,得解得直线的解析式为,设,所以所以将点代入,得整理,得因式分解,得解得,或(与点P重合,舍去)当时,所以点C的坐标是【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键5、(1)点在直线上,理由见详解;(2)a=-1,b=2;(3)【解析】【分析】(1)先将A代入,求出直线解析式,然后将将B代入看式子能否成立即可;(2
24、)先跟抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,判断出抛物线只能经过A,C两点,然后将A,C两点坐标代入得出关于a,b的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,根据顶点在直线上,得出k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,在将式子配方即可求出最大值【详解】(1)点在直线上,理由如下:将A(1,2)代入得,解得m=1,直线解析式为,将B(2,3)代入,式子成立,点在直线上;(2)抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,抛物线只能经过A,C两点,将A,C两点坐标代入得,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,顶点在直线上,k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,-h2+h+1=-(h-)2+,当h=时,此抛物线与轴交点的纵坐标取得最大值【考点】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有