1、九年级数学上册第二十一章一元二次方程综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是()ABC且D2、如果关于的一元二次方程有两
2、个实数根,那么的取值范围是()AB且C且D3、关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=34、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为()Ax(x+1)1056Bx(x1)10562Cx(x1)1056D2x(x+1)10565、定义运算:例如则方程的根的情况为()A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根6、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,6
3、97、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D28、某校组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请个队参赛,则满足的关系式是()ABCD9、下列方程中,是关于x的一元二次方程的是()Aax2+bx+c0(a,b,c为常数)Bx2x20C20Dx2+2xx2110、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C12或16D12或16第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于的一元二次方程有一个
4、根是,则的值是_2、设、是一元二次方程的两个根,且,则_,_3、已知方程x23x10的根是x1和x2,则x1x2x1x2_4、已知关于x的一元二次方程有一实数根为,则该方程的另一个实数根为_5、若代数式有意义,则x的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、2022年某地桑葚节于4月5日到4月20举行,热情的当地居民为游客准备了桑葚茶、桑葚酒、桑葚酱、桑葚膏等等,在当地举行的“桑葚会”上,游客不仅可以品尝纯正的桑葚茶、桑葚酒、桑葚酱、桑葚音,而且还能体验制作它们的过程各类桑葚产品均对外销售,游客们可以买一些送给亲朋好友已知桑葚酒是桑葚酱单价的,预计桑葚节期间全镇销售桑葚酒
5、和桑葚酱共7500千克,桑葚酒销售额为200000元,桑葚酱销售额为125000元(1)求本次桑葚节预计销售桑葚酒和桑葚酱的单价;(2)今年因受“新冠”疫情的影响,前来参加桑葚节的游客量比预计有所减少,当地镇府为了刺激经济,减少库存,将桑葚酒和桑葚酱降价促销桑葚酱在预计单价的基础上降低销售,桑葚酒比预计单价降低元销售,这样桑葚酱的销量跟预计一样,桑葚酒的销量比预计减少了a%,桑葚酒和桑葚酱的销售总额比预计减少了3500a元求a的值2、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.3、已知关于x的一元二次方程x2+(2m+1)x+m220(1)若
6、该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1x2)2+m221,求m的值4、解下列方程:(1)x26x+81;(2)2x24x305、已知:如图所示,在ABC中,B90,AB5cm,BC7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动(1)如果P、Q分别从A、B同时出发,那么几秒后,PBQ的面积等于4cm2?(2)在(1)中,PQB的面积能否等于7cm2?请说明理由-参考答案-一、单选题1、C【解析】【分析】由一元二次方程定义得出二次项系数k0;由
7、方程有两个不相等的实数根,得出“0”,解这两个不等式即可得到k的取值范围【详解】解:由题可得:,解得:且;故选:C【考点】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求2、C【解析】【分析】根据关于x的一元二次方程kx2-3x+1=0有两个实数根,知=(-3)2-4k10且k0,解之可得【详解】解:关于x的一元二次方程kx2-3x+1=0有两个实数根,=(-3)2-4k10且k0,解得k且k0,故选:C【考点】本题主要考查根的判别式与一元二次
8、方程的定义,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立3、C【解析】【分析】利用因式分解法求出已知方程的解【详解】x2-4x+3=0,分解因式得:(x-1)(x-3)=0,解得:x1=1,x2=3,故选C【考点】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的
9、问题了(数学转化思想)4、C【解析】【分析】如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名同学,那么总共送的张数应该是x(x-1)张,即可列出方程【详解】解:全班有x名同学,每名同学要送出(x-1)张;又是互送照片,总共送的张数应该是x(x-1)=1056故选C【考点】本题考查一元二次方程在实际生活中的应用计算全班共送多少张,首先确定一个人送出多少张是解题关键5、A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案【详解】解:根据定义得: 原方程有两个不相等的实数根,故选【考点】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别
10、式,掌握以上知识是解题的关键6、A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方7、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解8、B【解析】【分析】关系式为:球队总数每支球队需赛的场数2=47,把相关数值代入即可【详解】解:每支球队都需要与其他球队
11、赛(x-1)场,但2队之间只有1场比赛,所以可列方程为:故答案为:B【考点】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以29、B【解析】【分析】根据一元二次方程的定义逐一进行分析即可求得答案.【详解】A若a0,则该方程不是一元二次方程,故A选项错误,B符合一元二次方程的定义,故B选项正确,C属于分式方程,不符合一元二次方程的定义,故C选项错误,D整理后方程为:2x+10,不符合一元二次方程的定义,故D选项错误,故选B【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然
12、后看化简后是否是只含有一个未知数且未知数的最高次数是210、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则BC6AB,把6代入方程得3648+m0,m12;ABAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键二、填空题1、1【解析】【分析】把方程的根代入原方程得到,解
13、得k的值,再根据一元二次方程成立满足的条件进行取舍即可【详解】方程是一元二次方程,k+20,即k-2;又0是该方程的一个根,解得,由于k-2,所以,k=1故答案为:1【考点】本题考查了一元二次方程的解解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方2、 , 【解析】【详解】分析:根据根与系数的关系得到m=1,然后解一元二次方程即可得到和的值.详解:、是一元二次方程的两个根,,m=1,解得=-2,=3.故答案为:-2,3.点睛:本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a0)的两根时,=-,=.
14、3、2【解析】【分析】根据根与系数的关系可得出x1+x23、x1x21,将其代入x1+x2x1x2中即可求出结论【详解】解:方程x23x10的两个实数根为x1、x2,x1x23、x1 x21,x1x2x1x2312,故答案为:2【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x24、【解析】【分析】根据一元二次方程的解的定义把x=-1代入原方程得到关于m的一元二次方程,解得m的值,然后根据一元二次方程的定义确定m的值【详解】解:把x=-1代入得m2-5m+4=0,解得m1=1,m2=4,(m-1)20,m1m=4.方程为9x2+12x
15、+3=0.设另一个根为a,则-a=.a=-.故答案为: -【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根也考查了一元二次方程的定义5、3x且x【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0【详解】解:若代数式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;
16、当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0三、解答题1、 (1)预计销售桑葚酱的单价为50元/千克,销售桑葚酒的单价为40元/千克(2)20【解析】【分析】(1)设预计销售桑葚酱的单价为x元/千克,则销售桑葚酒的单价为元/千克,根据销售桑菩酒和桑菩酱共7500千克,桑葚酒销售额为200000元,桑葚酱销售额为125000元,列分式方程,解此分式方程即可解答;(2)根据题意分别计算出降价后,桑葚酱的销售单价、销售量,桑葚酒的销售单价、销售量,再由销售总额比预计减少了3500a元列方程,解此方程即可解答(1)解:设桑葚节预计销售桑葚酱的单价为x元/千克,则销售桑葚酒的单价为元/千
17、克,根据题意得:,解得:经检验,是方程的解,答:预计销售桑葚酱的单价为50元/千克,则销售桑葚酒的单价为40元/千克(2)桑葚酱降价后的单价为,桑葚酒降价后的单价为元,桑葚酱的销量为千克,桑葚酒的销量为千克,解得:a=20或a=0(舍去),a=20【考点】本题考查分式方程的应用、一元二次方程的应用等知识,是重要考点,掌握相关知识是解题关键2、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m
18、的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程3、(1)-2;(2)2【解析】【分析】(1)利用判别式的意义得到(2m+1)24(m22)0,然后解不等式得到m的范围
19、,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2(2m+1),x1x2m22,再利用(x1x2)2+m221得到(2m+1)24(m22)+m221,接着解关于m的方程,然后利用(1)中m的范围确定m的值【详解】解:(1)根据题意得(2m+1)24(m22)0,解得m,所以m的最小整数值为2;(2)根据题意得x1+x2(2m+1),x1x2m22,(x1x2)2+m221,(x1+x2)24x1x2+m221,(2m+1)24(m22)+m221,整理得m2+4m120,解得m12,m26,m,m的值为2【考点】本题考查一元二次方程根的判别式及根与系数关系,掌握相关公式
20、正确计算是本题的解题关键.4、(1)x1x23;(2)x1,x2【解析】【分析】(1)先移项,合并后根据完全平方公式进行变形,再开方,即可得出一元一次方程,求出方程的解即可;(2)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x26x+81,x26x+8+10,x26x+90,(x3)20,x30,x1x23;(2)2x24x30,2x24x3,x22x,x22x+1+1,(x1)2,开方得:x1,x1,x2【考点】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键5、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒
21、钟,PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看PBQ的面积能否等于7cm2,只需令2x(5x)7,化简该方程后,判断该方程的与0的关系,大于或等于0则可以,否则不可以【详解】解:(1)设经过x秒以后PBQ面积为4cm2,根据题意得(5x)2x4,整理得:x25x+40,解得:x1或x4(舍去)答:1秒后PBQ的面积等于4cm2;(2)由(1)同理可得(5x)2x7整理,得x25x+70,因为b24ac25280,所以,此方程无解所以PBQ的面积不可能等于7cm2【考点】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在
Copyright@ 2020-2024 m.ketangku.com网站版权所有