1、九年级数学上册第二十一章一元二次方程专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、元二次方程2x22x10的根的情况为()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根2
2、、下列方程中,有实数根的方程是()ABCD3、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A4B5C6D74、方程的解是()A2或0B2或0C2D2或05、用配方法解一元二次方程,配方正确的是()ABCD6、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D12人7、若m,n是方程x2x2 0220的两个根,则代数式(m22m2 022)(n22n2 022)的值为()A2 023B2 022C2 021D2 0208、抛物线yx2+1的对称轴是()A直线x1B直线x1C直线x0
3、D直线y19、已知关于x的一元二次方程有两个不相等的实数根x1,x2若,则m的值是()A2B1C2或1D不存在10、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=100第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设、是一元二次方程的两个根,且,则_,_2、一元二次方程的两根为,则_3、已知是一元二次方程的两个实数根,则的值是_4、若x=1是关于x的一元二次方程x2+3mx+
4、n=0的解,则6m+2n=_5、已知,且则的值是_三、解答题(5小题,每小题10分,共计50分)1、已知关于的一元二次方程(1)求证:无论为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根,满足,求的值2、已知关于的一元二次方程有两个不相等的实数根(1)求的取值范围;(2)若方程的两根都为整数,求正整数的值3、用配方法解下列关于x的方程(1)(2)4、解下列一元二次方程:(1);(2)5、解方程(1)(x+1)264=0(2)x24x+1=0(3)x2 + 2x20(配方法)(4)x 2-2x-8=0-参考答案-一、单选题1、B【解析】【分析】根据方程的系数结合根的判别式,即可得出
5、120,进而即可得出方程2x22x10有两个不相等的实数根【详解】a2,b2,c1,b24ac(2)242(1)120,方程有两个不相等的实数根故选B【考点】本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键2、D【解析】【分析】先移项,再根据算术平方根的非负性即可判断A;根据根的判别式即可判断B;根据算术平方根的非负性得出且,即可判断C;方程两边都乘以,再求出方程的解,进行检验后即可判断D【详解】解:A、,移项,得,不论为何值,此方程无实数根,故本选项不符合题意;B、,此方程无解,即原方程无实数根,故本选项不符合题意;C、,且,此时不存在,即原方程无实数根,故本选项不
6、符合题意;D、,方程两边都乘以,得,解得:,经检验是增根,是原方程的解,即原方程有实数根,故本选项符合题意;故选:D【考点】本题考查了解无理方程,算术平方根,四次方根,解分式方程等知识点,能把无理方程转化成有理方程和把分式方程转化成整式方程是解此题的关键3、C【解析】【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x1)场球,第二个球队和其他球队打(x2)场,以此类推可以知道共打(1+2+3+x1)场球,然后根据计划安排15场比赛即可列出方程求解【详解】设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=5(不合题意,舍去),则共有6个班级参赛,故选:C【考点】本题考查了一元
7、二次方程的应用,解题的关键是读懂题意,根据等量关系准确的列出方程4、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高次方程转化为二次方程或一次方程是解题的关键5、A【解析】【分析】按照配方法的步骤进行求解即可得答案【详解】解:,移项得,二次项系数化1的,配方得,即,故选:A【考点】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方6、C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果
8、一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.7、B【解析】【详解】解:m、n是方程x2-x-2022=0的两个根,m2-m-2022=0,n2-n-2022=0,mn=-2022,m2-m=2022,n2-n=2022,(m22m2 022)(n22n2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)(-2022+n+20
9、22)=-mn=2022,故选:B【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键8、C【解析】【分析】由抛物线解析式可直接求得答案【详解】解:抛物线y=x2+1,抛物线对称轴为直线x=0,即y轴,故选C【考点】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)9、A【解析】【分析】先由二次项系数非零及根的判别式,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出,结合,即可求出m
10、的值【详解】解:关于x的一元二次方程mx2(m+2)x+=0有两个不相等的实数根x1、x2,解得:m1且m0,x1、x2是方程mx2(m+2)x+=0的两个实数根,m=2或1,m1,m=2故选:A【考点】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式,找出关于m的不等式组;(2)牢记,10、A【解析】【分析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x
11、)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A【考点】本题考查了一元二次方程的应用(增长率问题)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程二、填空题1、 , 【解析】【详解】分析:根据根与系数的关系得到m=1,然后解一元二次方程即可得到和的值.详解:、是一元二次方程的两个根,,m=1,解得=-2,=3.故答案为:-2,3.点睛:本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a0)的两根时,=-,=.2、【解析】【分析】根据根与系数的
12、关系表示出和即可;【详解】,=,=故答案为【考点】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键3、2【解析】【分析】由已知结合根与系数的关系可得:=4,= -7,=,代入可得答案.【详解】解:是一元二次方程的两个实数根,=4,= -7,=2,故答案为:2【考点】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题4、-2【解析】【详解】把x=1代入+3mx+n=0得:1+3m+n=0,3m+n=1, 6m+2n=2(3m+n)=2(-1)=2,故答案为:-2【考点】考点:整体思想求代数式的值.5、4或-1【解析】【分析】将已知等式两边同除以进行变形,再
13、利用换元法和因式分解法解一元二次方程即可得【详解】将两边同除以得:令则因式分解得:解得或即的值是4或故答案为:4或【考点】本题考查了利用换元法和因式分解法解一元二次方程,将已知等式进行正确变形是解题关键三、解答题1、(1)见解析(2)0,-2【解析】【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得与的、的关系式,进一步可以求出答案.【详解】(1)证明:,无论为何实数,无论为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得:,化简得:,解得,【考点】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.2、(1);(
14、2)【解析】【分析】(1)直接运用一元二次方程根的判别式列不等式解答即可;(2)先运用求根公式求解,然后根据根为整数以及二次根式有意义的条件列式解答即可【详解】解:(1)关于的方程有两个实数根,解得,;(2)由题意得,为整数,且为正整数,或,又【考点】本题主要考查了一元二次方程根的判别式、运用公式法解一元二次方程等知识点,灵活运用相关知识点成为解答本题的关键3、(1),;(2),【解析】【分析】(1)根据配方法,先把常数项移到等式右边,再两边同时加上36,等式左边凑成完全平方形式,再直接开平方得出结果;(2)根据配方法,先把二次项系数化为1,然后把常数项移到等式右边,再两边同时加上1,等式左边
15、凑成完全平方形式,再直接开平方得出结果【详解】(1),;(2),【考点】本题考查一元二次方程的解法配方法,解题的关键是熟练掌握配方法的方法4、 (1),(2),【解析】【分析】(1)方程整理后得,再运用因式分解法求出方程的解即可;(2)原方程运用配方法求解即可(1)整理得, ,(2) ,【考点】本题主要考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键5、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移项后,运用直接开平方法求解即可;(2)根据配方法解一元二次方程的步骤依次计算即可;(3)根据配方法解一元二次方程的步骤依次计算即可;(4)根据因式分解法求解即可【详解】解:(1)(x+1)2=64x+1=8x1=7,x2=-9(2)x24x=-1x24x+4=-1+4(x-2)2=3x-2=x1=2+,x2=2-(3)x2 + 2x2x2 + 2x+12+1(x+1)2=3x+1=x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0x1=-2,x2=4【考点】本题考查一元二次方程的求解,选择适合的方法是解题关键