ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:494.38KB ,
资源ID:693782      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-693782-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年京改版八年级数学上册第十二章三角形定向测试练习题(解析版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年京改版八年级数学上册第十二章三角形定向测试练习题(解析版).docx

1、京改版八年级数学上册第十二章三角形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若中,则一定是()A锐角三角形B钝角三角形C直角三角形D任意三角形2、若等腰三角形的顶角是40,则它的底角是()A

2、40B70C80D1003、如图,在中,则()ABCD4、如图,在中,分别是,边上的中线,且与相交于点,则的值为()ABCD5、下列长度的3根小木棒不能搭成三角形的是()A2cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm6、如图,点P是以A为圆心,AB为半径的圆弧与数轴的交点,则数轴上点P表示的实数是()A-2B-2.2C-D-+17、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、38、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A1B2C4D89、如图,在中,平分,于点的角平分线所在直线与射线相交

3、于点,若,且,则的度数为()ABCD10、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AB=AC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是_(写出一个即可)2、如图,直线,点在直线上,点在直线上,则_3、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_4、如图,是一个中心对称图形,A为对称中心,若,则_,_5、如图,在四边形ABCD中,那么四边形ABCD的面积是_三、解答题(5小题,每小题10分,共计50分)1、问题情景:

4、如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式2、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD=2AE.3、如图,在中,的垂直平分线分别交、于点D、E,的垂直平分线分别交、于点F、G求的周长4、如图,在

5、中,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F (1)如图,过点A的直线与斜边BC不相交时,求证:;(2)如图,其他条件不变,过点A的直线与斜边BC相交时,若,试求EF的长5、如图,在四边形ABCD中,BAD90,点E在AC上,ECEDDA求CAB的度数-参考答案-一、单选题1、B【解析】【分析】根据三角形内角和180,求出最大角C,直接判断即可.【详解】解:A:B:C=1:2:4设A=x,则B=2x,C=4x,根据三角形内角和定理得到:x+2x+4x=180,解得:x=则C=4= ,则ABC是钝角三角形故选B.【考点】本题考查了三角形按角度的分类.2、B【解析】【分析】根据等腰三

6、角形的性质和三角形内角和定理可直接求出其底角的度数【详解】解:因为等腰三角形的两个底角相等,又因为顶角是40,所以其底角为70故选:B【考点】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等3、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.4、A【解析】【分析】根据三角形的重心性质得到,根据三角形的面积公式得到,据此解题【详解】解:点是,边上的中线,

7、的交点,故选:【考点】本题考查三角形重心的概念与性质、三角形面积等知识,是重要考点,掌握相关知识是解题关键5、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三角形,符合题意;C,能构成三角形,不合题意;D,能构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数6、D【解析】【分析】在三角形AOB中,利用勾股定理求出AB的长,即可确定出AP的长,得到P表示的实数.【详解】在RtAOB中,OA=1,OB=3,根据勾股定理得:AB=,AP=AB=,OP=AP-OA=-1,则P表示的实

8、数为-+1故选D【考点】本题考查了勾股定理,以及实数与数轴,熟练掌握勾股定理是解题的关键7、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.8、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键9、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到

9、,代入的值即可【详解】平分,平分,设可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键10、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键二、填空题1、BAD=CAD(或BD=CD)【解析】【分析】证明ABDACD,已经具备 根据选择的判定三角形全等的判定方法可得答案【详解】解: 要使 则可以添加:BAD=CAD,此时利用边角边判定:或可以添加: 此

10、时利用边边边判定:故答案为:BAD=CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键2、【解析】【分析】利用等腰三角形的性质得到C=4=,利用平行线的性质得到1=3=,再根据三角形内角和定理即可求解【详解】如图,延长CB交于点D,AB=BC,C=,C=4=,1=,1=3=,C +3+2+4 =,即故答案为:【考点】本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等3、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=

11、EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】延长AC至E,使CE=BM,连接DEBD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=ACB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;

12、故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键4、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合,【考点】本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键5、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出BDC是直角三角形,两个三角形面积相加即可【详解】解:连结BD,BD=6,BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,BDC=90,SABD=,SBDC=,

13、四边形ABCD的面积是= SABD+ SBDC=+24故答案为:+24【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题1、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+ACB,PBC+PCB,然后即可得出ABP+ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【

14、详解】(1)ABC+ACB=180-A=180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=35度;(2)猜想:ABP+ACP=90-A;证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=ACP+PCB,(ABP+PBC)+(ACP+PCB)=180-A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB

15、180-A,ABC=PBC-ABP,ACB=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90,ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.2、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【详解】(1)证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F

16、=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL3、10【解析】【分析】根据线段垂直平分线的性质可得,据此即可求解【详解】解:是的垂直平分线,是的垂直平分线,的周长【考点】此题主要考查了线段垂直平分线的性质等几何知

17、识,线段垂直平分线上的点到线段两端点的距离相等4、(1)见详解;见详解;(2)7【解析】【分析】(1)由条件可求得EBAFAC,利用AAS可证明ABECAF;利用全等三角形的性质可得EAFC,EBFA,利用线段的和差可证得结论;(2)同(1)可证明ABECAF,可证得EFFAEA,代入可求得EF的长【详解】(1)证明:BEEF,CFEF,AEBCFA90,EABEBA90,BAC90,EABFAC90,EBAFAC,在AEB与CFA中,ABECAF(AAS),ABECAF,EAFC,EBFA,EFAFAEBECF;(2)解:BEAF,CFAFAEBCFA90EABEBA90BAC90EABFA

18、C90EBAFAC,在AEB与CFA中,ABECAF(AAS),EAFC,EBFA,EFFAEAEBFC1037【考点】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键5、【解析】【分析】根据等腰三角形的性质,等边对等角,又利用平行线的性质可得角度之间的关系,从而可以求解【详解】DECE,ECDCDEDEA是CDE的外角,DEAECDCDE2ECDDEAD,DEADAE,DAE2ECD,CABDCA,DAE2CABBAD90,故答案为:【考点】本题主要考查等腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1