1、京改版八年级数学上册第十二章三角形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4
2、个2、如图,在ABC中,ACB90,B-A10,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F若DEF中有两个角相等,则ACD的度数为()A15或20B20或30C15或30D15或253、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或64、如图,在中,的周长10,和的平分线交于点,过点作分别交、于、,则的长为()A10B6C4D不确定5、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD6、如图,已知ABAC,ADAE,AB=AC,AD=AE,则BFD的度数是()A60B90C45D1207、如图,在中,角平分线交于点,则点到的距离是
3、( )AB2CD38、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD9、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()ABCD10、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AB=AC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是_(写出一个即可)2、 “内错角相等,两直线平行”的逆命题是_3、如图,一个等腰直角三角尺的两
4、个顶点恰好落在笔记本的两条横线a,b上若,则_4、在ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_5、如图所示,在中,D是的中点,点A、F、D、E在同一直线上请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明你添加的条件是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC和ADE中,AB=AD,B=D,1=2求证:BC=DE2、已知:如图,相交于点O,求证:(1);(2)3、如图,某港口位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里它们离开港
5、口一个半小时后分别位于点Q,R处,且相距30海里如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?4、如图,已知线段a、b和,用尺规作一个三角形,使(要求:不写已知、求作、作法、只画图,保留作图痕迹)5、如图,D是ABC的边AC上一点,点E在AC的延长线上,EDAC,过点E作EFAB,并截取EFAB,连接DF求证:DF=CB-参考答案-一、单选题1、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解
6、得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”.2、C【解析】【分析】由三角形的内角和定理可求解A=40,设ACD=x,则CDF=40+x,ADC=180-40-x=140-x,由折
7、叠可知:ADC=CDE,E=A=40,可分三种情况:当DFE=E=40时;当FDE=E=40时;当DFE=FDE时,根据ADC=CDE列方程,解方程可求解x值,即可求解【详解】解:在ABC中,ACB=90,B+A=90,B-A=10,A=40,B=50,设ACD=x,则CDF=40+x,ADC=180-40-x=140-x,由折叠可知:ADC=CDE,E=A=40,当DFE=E=40时,FDE+DFE+E=180,FDE=180-40-40=100,140-x=100+40+x,解得x=0(不存在);当FDE=E=40时,140-x=40+40+x,解得x=30,即ACD=30;当DFE=FD
8、E时,FDE+DFE+E=180,FDE=70,140-x=70+40+x,解得x=15,即ACD=15,综上,ACD=15或30,故选:C【考点】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据ADC=CDE分三种情况列方程是解题的关键3、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰
9、和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答4、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB和EO=EC,从而得出DE=DBEC,然后根据的周长即可求出AB.【详解】解:OBC=DOBBO平分OBC=DBODOB=DBODO = DB同理可证:EO=ECDE=DOEO= DBEC,的周长10,ADAEDE=10ADAEDBEC =10ABAC=10AB=10AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.5、C【解析】【分析】根据,
10、可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键6、B【解析】【分析】先证BAECAD,得出B=C,再证CFB=BAC=90即可【详解】解:ABAC,ADAE,BAC=DAE=90,BAE=CAD,在BAE和CAD中,,BAECAD,B=C,BGA=CGF,CFB=BAC=90,BFD=90,故选:B【考点】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数7、A【解析】【分析】作DEAC于E,作DFBC于F,根据勾股定理可求AC,根据角平分线的性质可得DE=
11、DF,再根据三角形面积公式即可求解【详解】解:作DEAC于E,作DFBC于F,在RtACB中,CD是角平分线,DE=DF,即,解得DE=故点D到AC的距离是故选:A【考点】本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等8、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折
12、叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决9、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案【详解】标记如下:,(ab)2a2+b24a22ab+b2故选:C【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键10、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=AD,连接CM,是的边上的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm
13、,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键二、填空题1、BAD=CAD(或BD=CD)【解析】【分析】证明ABDACD,已经具备 根据选择的判定三角形全等的判定方法可得答案【详解】解: 要使 则可以添加:BAD=CAD,此时利用边角边判定:或可以添加: 此时利用边边边判定:故答案为:BAD=CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键2、两直线平行,内错角相等【解析】【详解】试题分析:把一个命题的条件和结论互换就得到它的逆命题考
14、点:命题与定理3、25【解析】【分析】求出3=25,根据平行线的性质可得出【详解】解:如图,ABC是等腰直角三角形,BAC=45,即 1=203=25 2=3=25故答案为:25【考点】此题主要考查了平行线的性质和等腰直角三角形的性质,熟练掌握蜀道难突然发觉解答此题的关键4、9或1【解析】【详解】【分析】ABC中,ACB分锐角和钝角两种:如图1,ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;如图2,ACB是钝角时,同理得:CD=4,BD=5,根据BC=BDCD代入可得结论【详解】有两种情况:如图1,AD是ABC的高,ADB=ADC=90,由勾股定理得:BD=5,CD=4,BC=B
15、D+CD=5+4=9;如图2,同理得:CD=4,BD=5,BC=BDCD=54=1,综上所述,BC的长为9或1;故答案为9或1【考点】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题5、ED=FD(答案不唯一,E=CFD或DBE=DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可【详解】解:D是的中点,BD=DC若添加ED=FD在BDE和CDF中,BDECDF(SAS);若添加E=CFD在BDE和CDF中,BDECDF(AAS);若添加DBE=DCF在BDE和CDF中,BDECDF(ASA);故答案为:ED=FD
16、(答案不唯一,E=CFD或DBE=DCF)【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键三、解答题1、证明见解析.【解析】【分析】根据ASA证明ADEABC即可得到答案;【详解】证明:1=2,DAC+1=2+DACBAC=DAE,在ABC和ADE中,ADEABC(ASA)BC=DE,【考点】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等2、(1)见详解;(2)见详解【解析】【分析】(1)根据AAS,即可证明;(2)根据全等三角形的性质得OB=OC,进而即可得到结论【详解】证明:(1)在
17、与中,(AAS);(2),OB=OC,【考点】本题主要考查全等三角形的判定和性质定理以及等腰三角形的性质,掌握AAS判定三角形全等,是解题的关键3、北偏西45(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海天”号航行方向【详解】解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,182+242=302,RPQ是直角三角形,RPQ=90,“远航”号沿东北方向航行,即沿北偏东45方向航行,RPS=45,“海天”号沿北偏西45(或西北)方向航行【考点】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定
18、理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大4、见解析【解析】【分析】先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作5、证明过程见解析【解析】【分析】根据EFAB,得到,再根据已知条件证明,即可得解;【详解】EFAB,在和中,;【考点】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有