1、八年级数学上册第十一章实数和二次根式综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列二次根式中,与是同类二次根式的是()ABCD2、设,则()ABCD3、若,则a,b,c的大小关系为()ABC
2、D4、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个5、如图,实数3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A点MB点NC点PD点Q6、根据以下程序,当输入时,输出结果为()AB2C6D7、下列说法错误的是()A中的可以是正数、负数、零B中的不可能是负数C数的平方根一定有两个,它们互为相反数D数的立方根只有一个8、下列运算正确的是()ABCD9、按如图所示的运算程序,能使输出y值为1的是()ABCD10、下列等式成立的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算的结果是_2、已知
3、数a、b、c在数粒上的位置如图所示,化简的结果是_3、若x满足|2017-x|+ =x, 则x-20172=_4、已知,则的值是_5、若x3是4的平方根,则x=_三、解答题(5小题,每小题10分,共计50分)1、计算:2、我们知道,任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零由此可得:如果,其中m、n为有理数,x为无理数,那么m=0且n=0(1)如果,其中a、b为有理数,那么a= ,b= ;(2)如果,其中a、b为有理数,求的平方根;(3)若x,y是有理数,满足,求的算术平方根3、计算:4、当运动中的汽车撞击到物体时,汽车所受到的损坏
4、程度可以用“撞击影响”来衡量某种型号的汽车的撞击影响可以用公式I2v2来表示,其中v(千米/分)表示汽车的速度假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少(精确到0.1千米/分)5、 “说不完的”探究活动,根据各探究小组的汇报,完成下列问题(1)到底有多大?下面是小欣探索的近似值的过程,请补充完整:我们知道面积是2的正方形边长是,且设,画出如下示意图由面积公式,可得_因为值很小,所以更小,略去,得方程_,解得_(保留到0.001),即_(2)怎样画出?请一起参与小敏探索画过程现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形
5、要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形小敏同学的做法是:设新正方形的边长为依题意,割补前后图形的面积相等,有,解得把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形说明:直接画出图形,不要求写分析过程-参考答案-一、单选题1、A【解析】【分析】先将各式化为最简二次根式,再利用同类二次根式定义判断即可【详解】解:A、原式,符合题意;B、原式,不符合题意;C、原式,不
6、符合题意;D、原式不能化简,不符合题意故选:A【考点】此题考查了同类二次根式,几个二次根式化为最简二次根式后,被开方数相同的即为同类二次根式2、C【解析】【分析】先估计的范围,再得出a的范围即可.【详解】解:479,即,故选C.【考点】本题考查了无理数的估算,解题的关键是掌握无理数的估算方法.3、C【解析】【分析】根据无理数的估算进行大小比较【详解】解:,又,故选:C【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键4、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无理数是无限不循环小数,
7、有理数是有限小数或无限循环小数5、B【解析】【详解】实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,原点在点P与N之间,这四个数中绝对值最小的数对应的点是点N故选B6、A【解析】【分析】把代入程序,算的结果小于即可输出,故可求解【详解】把代入程序,故把x=2代入程序得把代入程序,输出故选A【考点】此题主要考查求一个数的算术平方根,实数大小的比较,解题的关键是根据程序进行计算求解7、C【解析】【分析】按照平方根和立方根的性质判断即可【详解】A. 中的可以是正数、负数、零,正确,不符合题意;B. 中的不可能是负数,正确,不符合题意;C. 0的平方根只有0,故原说法错误,符合题意;D. 数
8、的立方根只有一个,正确,不符合题意;故选:C【考点】本题考查了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质8、D【解析】【分析】A.根据同类二次根式的定义解题;B.根据二次根式的乘法法则解题;C.根据完全平方公式解题;D.幂的乘方解题【详解】解:A. 与不是同类二次根式,不能合并,故A错误;B. ,故B错误;C. ,故C错误;D. ,故D正确,故选:D【考点】本题考查实数的混合运算,涉及同类二次根式、二次根式的乘法、完全平方公式、幂的乘方等知识,是重要考点,掌握相关知识是解题关键9、D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足mn,则y=2m+1=3; B选
9、项不满足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足mn,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.10、D【解析】【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断【详解】解:A. ,本选项不成立;B. ,本选项不成立;C. =,本选项不成立;D. ,本选项成立.故选:D.【考点】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键二、填空题1、【解析】【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分
10、母,最后约分即可【详解】,故答案为:【考点】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键2、0【解析】【分析】首先根据数轴可以得到ca0b,然后则根据绝对值的性质,以及算术平方根的性质即可化简【详解】解:根据数轴可以得到:ca0b,则c-b0,a+c0,则原式=-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0故答案是:0【考点】本题考查了二次根式的性质、整式的加减、以及绝对值的性质,解答此题,要弄清3、2018【解析】【分析】根据二次根式有意义的条件列出不等式,求解得出x的取值范围,再根据绝对值的意义化简即可得出方程 =2017,将方程的两边同时平方即可解决
11、问题【详解】解:由条件知,x-20180, 所以x2018,|2017-x|=x-2017. 所以x-2017+ =x,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018【考点】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x的取值范围是解题的关键4、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键5、-1、-5【解析】【详解】由题意得:x+3=2或者x+3=-2,解得:x=-1或-5故答
12、案:-1、-5三、解答题1、10【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得【详解】原式【考点】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键2、(1)2,-3;(2)3;(3)【解析】【分析】(1)根据题意可得:a-2=0,b+3=0,从而可得解;(2)把已知等式进行整理可得,从而得2a-b=9,a+b=0,从而可求得a,b的值,再代入运算即可;(3)将已知等式整理为,从而得3x-7y=9,y=3,从而可求得x,y的值,再代入运算即可【详解】解:(1)由
13、题意得:a-2=0,b+3=0,解得:a=2,b=-3,故答案为:2,-3;(2),2a-b-9=0,a+b=0,解得:a=3,b=-3,=9,的平方根为3;(3),3x-7y=9,y=3,x=10,=10-3=7,的算术平方根为【考点】本题主要考查实数的运算,解答的关键是理解清楚题意,得出相应的等式3、【解析】【分析】直接化简二次根式,进而合并即可;【详解】=【考点】此题考查二次根式的混合运算,正确化简二次根式是解题关键4、5.0【解析】【分析】由I=2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得,继而求得答案【详解】由题意知2v251,v2,所以v5.0(千米/分)该车撞击时的车速是5.0千米/分【考点】此题考查了算术平方根的应用注意理解题意是解此题的关键5、 (1),;(2)见解析【解析】【分析】(1)根据图形中大正方形的面积列方程即可;(2)在网格中分别找到11和12的长方形,依次连接顶点即可(1)由面积公式,可得值很小,所以更小,略去,得方程,解得(保留到0.001),即故答案为:,;(2)小敏同学的做法,如图:排列形式如图(3),如图:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形,如图所示【考点】本题考查了估算无理数的大小,考查数形结合的思想,根据正方形的面积求出带根号的边长是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有