1、八年级数学上册第十一章实数和二次根式章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是().ABCD2、若式子有意义,则实数m的取值范围是()Am2Bm2且m1Cm2Dm2且m13、
2、下列四个数中,最大的有理数是()A-1B-2019CD04、估计的值应在()A4和5之间B5和6之间C6和7之间D7和8之间5、计算下列各式,值最小的是()ABCD6、已知、为实数,且+44b,则的值是()ABC2D27、若一个正方形的面积是12,则它的边长是()AB3CD48、下列算式正确的是()ABCD9、如果y+3,那么yx的算术平方根是()A2B3C9D310、如图,在数轴上表示实数的点可能()A点PB点QC点MD点N第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、已知有意义,如果关于的方程没有实数根,那么的取值范围是_3、若一个数的立方根等于这个数
3、的算术平方根,则这个数是_4、的有理化因式可以是_(只需填一个)5、当时,化简 _三、解答题(5小题,每小题10分,共计50分)1、若x,y为实数,且y求的值2、已知实数a,b,c在数轴上的位置如图所示,化简:.3、阅读下列解题过程:;则:(1)化简:(2)观察上面的解题过程,请你猜想一规律:直接写出式子;(3)利用这一规律计算:的值4、已知线段a,b,c,且线段a,b满足|a|(b)20(1)求a,b的值;(2)若a,b,c是某直角三角形的三条边的长度,求c的值5、计算:(1)(2)-参考答案-一、单选题1、C【解析】【分析】根据二次根式的性质和法则逐一计算即可判断【详解】A. 是同类二次根
4、式,不能合并,此选项错误;B. =18,此选项错误;C. ,此选项正确;D.,此选项错误;故选C【考点】本题考查二次根式的混合运算,熟练掌握计算法则是解题关键.2、D【解析】【分析】根据二次根式有意义的条件即可求出答案【详解】由题意可知:,m2且m1,故选D【考点】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.3、D【解析】【分析】根据有理数大小比较判断即可;【详解】已知选项中有理数大小为,故答案选D【考点】本题主要考查了有理数比大小,准确判断是解题的关键4、D【解析】【分析】首先确定的值,进而可得答案【详解】解:2.224.42+37.472+38,故选:D【考点】此题主
5、要考查实数的估算,解题的关键是熟知实数的大小及性质5、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.; B.;C.; D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键.6、C【解析】【分析】已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值【详解】已知等式整理得:0,a,b2,即ab1,则原式2,故选:C【考点】本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算
6、式变形,是解题的关键7、A【解析】【分析】根据正方形的面积公式即可求解【详解】解:由题意知:正方形的面积等于边长边长,设边长为a,故a=12,a=,又边长大于0边长a=故选:A【考点】本题考查了正方形的面积公式,开平方运算等,属于基础题8、D【解析】【分析】根据算术平方根的非负性,立方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键9、B【解析】【详解】解:由题意得:x20,2x0,解得:x=2,y=3,则yx=9,9的算术平方根是3故选B10、C【解析】【分析】确定是在哪两个相邻的整数之间,
7、然后确定对应的点即可解决问题【详解】解:91516,34,对应的点是M故选:C【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解二、填空题1、【解析】【分析】根据实数的性质即可化简求解【详解】解:故答案为:【考点】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算2、【解析】【分析】把方程变形为,根据方程没有实数根可得,解不等式即可【详解】解:由得,有意义,且,方程没有实数根,即,故答案为:【考点】本题考查了二次根式的性质,解题关键是利用二次根式的非负性确定的取值范围3、0或1【解析】【分析】设这个数为a,由立方根等于这个数的算术平方根可以
8、列出方程,解方程即可求出a【详解】解:设这个数为a,由题意知,=(a0),解得:a=1或0,故答案为:1或0【考点】本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a04、【解析】【分析】根据平方差公式和有理化因式的意义即可得出答案【详解】解:,的有理化因式为,故答案为:【考点】本题考查分母有理化,理解有理化因式的意义和平方差公式是正确解答的关键5、【解析】【分析】先根据二次根式的定义和除法的性质可得,再根据二次根式的性质化简,然后计算二次根式的除法即可得【详解】由二次根式的定义得:,又除法运算的除数不能为0,则故答案为:【考点】本题考查了二次根式的定义与除法运算,
9、熟练掌握二次根式的运算法则是解题关键三、解答题1、【解析】【分析】根据二次根式的性质,被开方数大于等于0可知:14x0且4x10,解得x=,此时y=即可代入求解【详解】解:要使y有意义,必须,即 x当x时,y又|x,y,原式2当x,y时,原式2【考点】主要考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义2、【解析】【分析】直接利用数轴判断得出:a0,a+c0,c-a0,进而化简即可【详解】由数轴,得,.则原式.【考点】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.3、(1);(2);(3)2019【解析】【分析
10、】(1)可分母有理化也可利用上面的规律;(2)可分母有理化也可利用上面的规律;(3)先根据已知得到,合并后根据平方差公式即可求解【详解】解:(1),(2)原式 故答案为:(3) (202012019【考点】本题主要考查了分母有理化的应用、平方差公式、二次根式的混合运算、规律型:数字的变化类,理解题意找到规律是解题关键4、(1);(2)c的值为或4【解析】【分析】(1)根据绝对值与完全平方式非负性求出即可;(2)分类讨论斜边与直角边两种情,利用勾股定理求解即可【详解】解:(1),;(2)当为某直角三角形的两条直角边时,由勾股定理,当为某直角三角形的斜边时,b,c为直角边,由勾股定理,c的值为或4【考点】本题考查非负数的性质,以及勾股定理,二次根式化简,掌握非负数的性质,以及勾股定理,二次根式化为最简二次根式的方法,利用绝对值与完全平方式非负性求出的值是解题关键5、 (1);(2)【解析】【分析】(1)先计算二次根式的乘法,再计算加、减;(2)利用乘法分配律和平方差公式去括号,再相加、减即可(1)解:;(2)解:【考点】考查了二次根式的混合运算在二次根式的混合运算中,结合题目特点,灵活运用二次根式的性质是解题的关键,混淆完全平方公式及平方差公式是解题的易错点