1、八年级数学上册第十一章实数和二次根式专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中,正确的是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正实数包括正有理数和正无理数D实
2、数可以分为正实数和负实数两类2、式子在实数范围内有意义,则的取值范围是()ABCD3、化简的结果是()A5BCD4、下列二次根式是最简二次根式的是( )ABCD5、若,则x的值等于()A4BC2D6、定义a*b=ab+a+b,若3*x=27,则x的值是( )A3B4C6D97、下列计算:,其中结果正确的个数为()A1B2C3D48、计算下列各式,值最小的是()ABCD9、式子有意义,则实数a的取值范围是()Aa-1Ba2Ca-1且a2Da210、实数2021的相反数是()A2021BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若单项式与是同类项,则的值是_2、(
3、2)3的立方根为_3、求值:_4、8的立方根与 的平方根的和是_5、一个正数的两个平方根的和是_,商是_三、解答题(5小题,每小题10分,共计50分)1、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简(1)(2)(3)(4)(5)2、如果一个正数m的两个平方根分别是2a3和a9,求2m2的值3、计算:(1);(2)4、观察下列各式,并用所得出的规律解决问题:(1),由此可见,被开方数的小数点每向右移动_位,其算术平方根的小数点向_移动_位(2)已知,则_;_(3),小数点的变化规律是_(4)已知,则_5、阅读下列材料:设:,则.由-,得,即.所以.根据上述提供的方法.
4、把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?-参考答案-一、单选题1、C【解析】【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型2、D【解析】【分析】由二次根式有意义的条件列不等式可得答案【详解】解:由式子在实数范围内有意义, 故选D【考点】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键3、A【解析】【分析】先进行二次根式
5、乘法,再合并同类二次根式即可【详解】解: ,故选择A【考点】本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键4、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、被开方数含分母,故A不符合题意; B、被开方数,含分母,故B不符合题意; C、被开方数含能开得尽方的因数或因式,故C不符合题意; D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式5、C【解析】【分析】先化简、合
6、并等号左边的二次根式,再将系数化为,继而两边平方,进一步求解可得【详解】解:原方程化为,合并,得,即,故选:C【考点】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并6、C【解析】【分析】根据运算规则转化为一元一次方程,然后求解即可【详解】解:根据运算规则可知:3*x=27可化为3x+3+x=27, 移项可得:4x=24, 即x=6故选C【考点】本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等7、D【解析】【分析】根据二次根式的运算法则即可进行判断【详解】,正确;正确;正确;,正确,故选D【考点】此题主
7、要考查二次根式的运算,解题的关键是熟知二次根式的性质:;8、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.; B.;C.; D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键.9、C【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a-1且a2,故答案为:C.【考点】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.10、B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案【详解】
8、解:2021的相反数是:故选:B【考点】本题主要考查相反数的定义,正确掌握其概念是解题关键二、填空题1、2【解析】【分析】先根据同类项的定义求出m与n的值,再代入计算算术平方根即可得【详解】由同类项的定义得:解得则故答案为:2【考点】本题考查了同类项的定义、算术平方根,熟记同类项的定义是解题关键2、-2【解析】【分析】根据立方根的定义,掌握运算法则即可求出【详解】解:(-2)3=-8,-8的立方根是-2,故答案为:-2【考点】本题考查了立方根的知识,掌握运算法则是关键3、2+3【解析】【分析】根据同底数幂的乘法的逆用,积的乘方逆用和平方差公式计算即可【详解】解:原式.故答案为:【考点】本题考查
9、了同底数幂的乘法和积的乘方的逆用,平方差公式以及二次根式的运算等知识,属于常考题型,熟练掌握上述知识和解答的方法是关键4、1或5【解析】【分析】先求出-8的立方根,由=9,根据平方根的定义求出9的平方根,然后求出它们的和即可【详解】解:-8的立方根为=-2,而=9,则9的平方根为=3,-2+3=1或-2-3=-5,故答案为:1或-5【考点】本题考查了立方根、平方根、算术平方根的定义,熟练掌握相关定义及求解方法是解题的关键.5、 0 -1【解析】【分析】根据平方根的性质可知一个正数的两个平方根互为相反数,由此即可求出它们的和及商【详解】一个正数有两个平方根,它们互为相反数,一个正数的两个平方根的
10、和是0,商是-1故答案为0,-1【考点】本题考查了平方根的定义注意:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根1或0平方等于它的本身三、解答题1、(1)不是,;(2)不是,;(3)是;(4)不是,;(5)不是,.【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】(1),含有开得尽方的因数,因此不是最简二次根式(2),被开方数中含有分母,因此它不是最简二次根式;(3),被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4),在二次根式的被开方
11、数中,含有小数,不是最简二次根式;(5),被开方数中含有分母,因此它不是最简二次根式【考点】本题考查最简二次根式的定义解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式2、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值【详解】解:一个正数的两个平方根分别是2a3和a9,(2a3)+(a9)=0,解得a= 4,这个正数为(2a3) 2=52=25,2m2=2252= 48;故答案为48.【考点】本题考查平方根.3、 (1)0(2)【解析】【分析
12、】(1)根据二次根式的混合运算法则计算即可;(2)根据二次根式的混合运算法则计算即可(1)(2)【考点】本题考查二次根式的混合运算掌握二次根式的混合运算法则是解题关键4、(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果【详解】解:(1),由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位故答案为:两;右;一;(2)已知,则;故答案为:12.25;0.3873;(3),小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4),y=-0.01【考点】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键5、,.任何无限循环小数都可以化成分数.【解析】【分析】设则,;由,得;由已知,得,所以任何无限循环小数都可以这样化成分数.【详解】解:设则,由-,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.
Copyright@ 2020-2024 m.ketangku.com网站版权所有