1、京改版七年级数学上册第三章简单的几何图形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=,则CD的长为()A4B3
2、C2D12、一个几何体的侧面展开图如图所示,则该几何体的底面是()ABCD3、几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是()A笔尖在纸上移动划过的痕迹B长方形绕一边旋转一周形成的几何体C流星划过夜空留下的尾巴D汽车雨刷的转动扫过的区域4、计算:的值为()ABCD5、将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD6、下列说法正确的是()A大于且小于的角是锐角B大于的角是钝角C大于且小于的角是锐角或钝角D直角既是锐角也是钝角7、下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A用两个钉
3、子可以把木条钉在墙上B植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D为了缩短航程把弯曲的河道改直8、如图,直线被所截,下列说法,正确的有()与是同旁内角;与是内错角;与是同位角;与是内错角ABCD9、点,在同一条直线上,为中点,为中点,则的长度为()ABC或D不能确定10、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是几何体的展开图,
4、其中能围成三棱柱的有_(填序号)2、如图,已知AB8cm,BD3cm,C为AB的中点,则线段CD的长为_cm3、的补角等于_.4、如图,直角中,则内部五个小直角三角形的周长为_.5、长方体的长、宽、高分别是、,它的底面面积是_;它的体积是_三、解答题(5小题,每小题10分,共计50分)1、如图,两个形状、大小完全相同的含有30、60的直角三角板如图放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转(1)试说明DPC=90;(2)如图,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分APD,PE平分CPD,求EPF;(3)如图在图基础上,若
5、三角板PAC开始绕点P逆时针旋转,转速为5/秒,同时三角板PBD绕点P逆时针旋转,转速为1/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间2、如图,B是线段AD上一动点,沿ADA以3cm/s的速度往返运动1次,C是线段BD的中点,AD15cm,设点B运动时间为t秒(0t10)(1)当t2时,求线段AB和CD的长度(2)用含t的代数式表示运动过程中AB的长(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变求出EC的长;若发生变化,请说明理由3、如图所示,点、在线段上,点、分别是、的中
6、点(1)设,求线段的长;(2)设,用表示线段的长4、将下列几何体按柱、锥、球分类.5、如图所示,说出下列几何体截面(阴影部分)的形状-参考答案-一、单选题1、D【解析】【分析】根据线段成比例求出DB的长度,即可得到AB的长度,再根据中点平分线段的长度可得AC的长度,根据即可求出CD的长度【详解】点 C 是线段 AB 上的中点故答案为:D【考点】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键2、B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【考点】考核知识点:几何体的三视图.3、D【解析】【分析】根据
7、点动成线,线动成面,面动成体即可一一判定【详解】解:A笔尖在纸上移动划过的痕迹,反映的是“点动成线”,故不符合题意;B长方形绕一边旋转一周形成的几何体,反映的是“面动成体”,故不符合题意;C流星划过夜空留下的尾巴,反映的是“点动成线”,故不符合题意;D汽车雨刷的转动扫过的区域,反映的是“线动成面”,故符合题意故选:D【考点】本题考查了点动成线,线动成面,面动成体,理解和掌握点动成线,线动成面,面动成体是解决本题的关键4、B【解析】【分析】先进行度、分、秒的乘法除法计算,再算减法【详解】故选:B【考点】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可5、B【解析】
8、【分析】根据面动成体,平面图形旋转的特点逐项判断即可得【详解】A、将平面图形绕轴旋转一周,得到的是上面大下面小中间凹,侧面是曲面的几何体,则此项不符题意;B、将平面图形绕轴旋转一周,得到的是上面小下面大中间凹,侧面是曲面的几何体,则此项符合题意;C、将平面图形绕轴旋转一周,得到的是上下底面等大,且中间凹的几何体,则此项不符题意;D、将平面图形绕轴旋转一周,得到的是一个圆台,则此项不符题意;故选:B【考点】本题考查了平面图形旋转后的几何体,熟练掌握平面图形旋转的特点是解题关键6、A【解析】【分析】根据锐角、直角、钝角的概念逐个判断即可【详解】解:A、大于且小于的角是锐角,故A选项正确;B、大于且
9、小于的角是钝角,故B选项错误;C、大于且小于的角是锐角、直角或钝角,故C选项错误;D、直角既不是锐角也不是钝角,故D选项错误,故选:A【考点】本题考查了锐角、直角、钝角的概念,熟练掌握相关概念是解决本题的关键7、D【解析】【分析】根据直线的性质和线段的性质对各选项进行逐一分析即可【详解】解:A、用两个钉子可以把木条钉在墙上是利用了两点确定一条直线,故本选项不符合题意;B、植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上是利用了两点确定一条直线,故本选项不符合题意;C、打靶的时候,眼睛要与枪上的准星、靶心在同一直线上是利用了两点确定一条直线,故本选项不符合题意;D、为了缩短航程把弯曲的
10、河道改直是利用了两点之间,线段最短,故本选项符合题意故选:D【考点】本题考查了直线和线段的性质,熟知“两点之间,线段最短”是解答此题的关键8、D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案【详解】解:与是同旁内角,说法正确;与是内错角,说法正确;与是同位角,说法正确;与是内错角说法正确,故选:D【考点】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形9、C【解析】【分析】分
11、点C在直线AB上和直线AB的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可【详解】解:当点C在直线AB上时为中点,为中点AM=BM=AB=3,BN=CN=BC=1,MN=BM-BN=3-1=2;当点C在直线AB延长上时为中点,为中点AM=CM=AB=3,BN=CN=BC=1,MN=BM+BN=3+1=4综上,的长度为或故答案为C【考点】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键10、A【解析】【分析】由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形【详解】解:根据所给出的图形和数字可得:从正面看有3列,每列小
12、正方形数目分别为4,3,2,则符合题意的是:故选:A【考点】本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形二、填空题1、【解析】【分析】依据展开图的特征,即可得到围成的几何体的类型【详解】解:图能围成圆锥;图能围成三棱柱;图能围成正方体;图能围成四棱锥;故答案为:【考点】本题主要考查了展开图折成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形2、1【解析】【分析】先根据中点定义求BC的长,再利用线段的差求CD的长【详解】解:C为AB的中点,A
13、B8cm,BCAB84(cm),BD3cm,CDBCBD431(cm),则CD的长为1cm;故答案为1【考点】此题主要考查线段的长度,解题的关键是熟知线段长度的运算关系.3、 143 45【解析】【分析】根据补角定义直接解答【详解】的补角等于:18014345故答案为:143;45【考点】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念4、30【解析】【详解】试题解析:RtABC中, 由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.故答案为30.5、 84 420【解析】【分析】根据长方体的底面积和体
14、积公式计算即可;【详解】长方体的底面积长宽,长方体的体积底面积高故答案为84,420【考点】本题主要考查了长方体的底面积和体积,准确计算是解题的关键三、解答题1、(1)见解析;(2);(3)旋转时间为15秒或秒时,PB、PC、PD其中一条射线平分另两条射线的夹角【解析】【分析】(1)结合题意利用直角三角形的两个锐角互余,即可证明(2)结合题意根据角平分线的定义,利用各角之间的等量关系即可求解(3)设t秒时,其中一条射线平分另两条射线的夹角根据题意求出t的取值范围,再根据情况讨论,利用数形结合的思想列一元一次方程,求解即可【详解】(1)两个三角板形状、大小完全相同,又,(2)根据题意可知,又,(
15、3)设t秒时,其中一条射线平分另两条射线的夹角,当PA转到与PM重合时,两三角板都停止转动,秒分三种情况讨论:当PD平分时,根据题意可列方程,解得t=15秒36秒,符合题意当PC平分时,根据题意可列方程,解得t=秒36秒,不符合题意舍去所以旋转时间为15秒或秒时,PB、PC、PD其中一条射线平分另两条射线的夹角【考点】本题考查直角三角形的性质,角平分线的定义,图形的旋转掌握图形旋转的特征,找出其等量关系来列方程求解是解答本题的关键2、(1)AB6cm,CD4.5cm;(2)当0t5时,AB3t,当5t10时,AB303t;(3)不变,EC7.5cm【解析】【分析】(1)时间速度即为AB的长;先
16、求出BD的长,再根据“C是线段BD的中点”求出CD的长;(2)需要分类讨论:当0t5时,根据时间速度求出AB的长;当5t10时,根据时间速度求出B点走过的路程,再用总路程减去AD的长求出BD的长,然后用AD的长减去BD的长即可求出AB的长;(3)根据中点公式表示出EB和BC的长,从而得到EC的长,继而可知EC的长是否为定值【详解】解:(1)B是线段AD上一动点,沿ADA以3cm/s的速度往返运动,当t2时,AB236cm;AD15cm,AB6cm,BD1569cm,C是线段BD的中点,CDBD94.5cm;(2)B是线段AD上一动点,沿ADA以3cm/s的速度往返运动,当0t5时,AB3t;当
17、5t10时,AB15(3t15)303t;(3)不变AB中点为E,C是线段BD的中点,EB=AB,BC=BD,ECEB+ BD =(AB+BD)AD157.5cm【考点】本题考查了线段的中点,线段的和差计算根据已知得出各个线段之间的等量关系是解题的关键3、(1);(2)【解析】【分析】(1)根据点、分别是、的中点,可得,从而,即可求解;(2)根据题意可得,从而,又由,即可求解【详解】解:点、分别是、的中点,(1),而, ,即; (2),即【考点】本题主要考查了线段的中点和两点之间的距离,解题的关键是利用线段的中点求出4、为一类,它们都是柱体;为一类,它们都是锥体;为一类,它是球体.【解析】【分析】根据柱体、椎体、球体的特点即可依次分类求解.【详解】由图形可得为一类,它们都是柱体;为一类,它们都是锥体;为一类,它是球体.【考点】此题主要考查几何体的分类,解题的关键是熟知柱体、椎体、球体的特点.5、见解析.【解析】【分析】根据截面的定义:用一个平面去截一个几何体,截出的面叫做截面,以及几何体(正方体、圆锥、圆柱)的形状,即可判断截面的形状【详解】可以得到三角形截面;沿圆锥的高线切割,可得到等腰三角形截面;沿正方体的对角线切割,可得到长方形截面;截面与底平行,可以得到圆形截面【考点】考查了常见几何体以及截面的性质,截面的形状与被截几何体有关,还与截面的角度和方向有关.
Copyright@ 2020-2024 m.ketangku.com网站版权所有