ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:204.50KB ,
资源ID:692204      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-692204-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省阳东广雅学校2014-2015学年高一下学期数学人教A版必修四教案:3.1两角和与差的正弦、余弦和正切.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广东省阳东广雅学校2014-2015学年高一下学期数学人教A版必修四教案:3.1两角和与差的正弦、余弦和正切.doc

1、附件一阳东广雅中学2014-2015学年度第二学期第11周集体备课记录年级高一科目数学主备教师刘金坤日期5.13课题3. 1 两角和与差的正弦、余弦和正切3. 2 简单的三角恒等变换课时5参与人员 李显规、杨学武、刘金坤主备教案 3.1.1 两角差的余弦公式三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用

2、联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.教学过程1、提出问题请学生猜想cos(-)=?利用向量的知识,如何推导发现cos(-)=?如图2,在平面直角坐标系xOy内作单位圆O,以Ox为始边作角、,它们的终边与单位圆O的交点分别为A、B,则= ,= ,AOB=.

3、由此可知,对于任意角、都有cos(-)=coscos+sinsin (C(-)细心观察C(-)公式的结构,它有哪些特征?其中、角的取值范围如何?填空,cos(A-B)=_,cos(-)=_如何正用、逆用、灵活运用C(-)公式进行求值计算?.如cos75cos45+sin75sin45=?cos =cos(+)cos+sin(+)sin.是否成立2、应用示例例1 利用差角余弦公式求cos15的值.变式训练1. 利用差角余弦公式求sin75,sin15的值.2. 利用差角余弦公式求:cos110cos20sin110sin20.的值例2 已知sin=,(,),cos=,是第三象限角,求cos(-)

4、的值.变式训练已知sin=,(0,),cos=,是第三象限角,求cos(-)的值.例3 已知cos=,cos(+)=,且、(0, ),求cos的值.变式训练课本习题3.1 A组4、5.题课堂练习课后练习1、2、3、4、题课堂小结1、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.2.、本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想

5、方法之目的.作业布置课本习题3.1 A组2、3、4、5.题3. 1.2 两角和与差的正弦、余弦、正切公式三维目标1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识

6、,提高学生的数学素质.重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.教学过程1、提出问题还记得两角差的余弦公式吗?请写出。在公式C(-)中,角是任意角,请思考角-中换成角-是否可以?此时观察角+与-(-)之间的联系,如何利用公式C(-)来推导cos(+)=?结论1、cos(+)=coscos-sinsin我们称以上等式为两角和的余弦公式,记作C(+).分析观察C(+)的结构有何特征?在公式C(-)、C(+)的基础上能否推导sin(+)=?sin(-)=?结论2、因此我们得到两角和与差的正弦公式,分别简记为S(+)、S(-).sin(

7、+)=sincos+cossin,sin(-)=sincos-cossin.公式S(-)、S(+)的结构特征如何?对比分析公式C(-)、C(+)、S(-)、S(+),能否推导出tan(-)=?tan(+)=?结论3、由此推得两角和、差的正切公式,简记为T(-)、T(+).tan(+)=tan(-)= 分析观察公式T(-)、T(+)的结构特征如何?我们把前面六个公式分类比较可得C(+)、S(+)、T(+)叫和角公式;S(-)、C(-)、T(-)叫差角公式.归纳总结以上六个公式的推导过程,得出以下逻辑联系图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时应注意:不仅要

8、掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式2、应用示例例1 已知sin=,是第四象限角,求sin(-),cos(+),tan(-)的值.练习:课本课后练习1、2、3、4、题例2 利用和差角公式计算下列各式的值.(1)sin72cos42-cos72sin42;(2)cos20cos70-sin20sin70;(3)练习:课本课后练习5、6、7、题例3 求证:cos+sin=2sin(+).(两种方法)练习:化简下列各式:(1)sinx+cosx;(2)cosx-sinx.3、课堂小结通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数

9、式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.推导并理解公式asinx+bcosx=sin(x+),运用它来解决三角函数求值域、最值、周期、单调区间等问题.4、作业布置习题3.1 A组7、13(1) (3) (5) (7) (9)3. 1.3 二倍角的正弦、余弦、正切公式三维目标1.通过探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发

10、现中和求值、化简、恒等证明中所起的作用,进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高分析问题、解决问题的能力.3.通过本节学习,引导领悟寻找数学规律的方法,培养的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.教学过程(问题导入) 1、 若sin=,(,),求sin2,cos2的值.并总结思想方法。 2、请试着用sin 或cos,表示sin2,cos2。 请试着用tan表示tan2。(新知讲解)这些公式都叫做倍角公式.倍角公式给出了的三角函数与2的三角函数之间的关

11、系.公式说明:()这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;()通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;()二倍角公式是两角和的三角函数公式的特殊情况;()公式(S2),(C2)中的角没有限制,都是R.但公式(T2)需在k+和k+(kZ)时才成立,但是当=k+,kZ时,虽然tan不存在,此时不能用此公式,但tan2是存在的,故可改用诱导公式.()二倍角公式不仅限于2是的二倍的形式,其他如4是2的二倍,是的二倍,3是的二倍,是的二倍,-是-的二倍等,所有这些都可以应用二倍角公式.(应用示例)例1 已知sin2=,求sin4,cos4,tan4的值

12、.练习1、已知cos=,812,求sin ,cos ,tan的值。2、已知sin(-)=,求cos2的值。例2、已知sin2=- sin,(,),求tan的值。练习1、已知tan2=,求tan的值。2、求下列各式的值:sin15cos15; - ; ;2cos22.5-1.例3、 在ABC中,cosA=,tanB=2,求tan(2A+2B)的值.(课堂小结)本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强

13、化数学思想方法之目的.(作业布置)课本习题3.1 A组15、16、17、题讨论记录本章强调了用向量方法推导差角的余弦公式,并用三角函数之间的关系推导和(差)角公式、二倍角公式。要把重点放在培养学生的推理能力和运算能力上,降低变换的技巧性要求。教学时应当把握好这种“度”,遵循“标准”所规定的内容和要求,不要随意补充知识点(如半角公式、积化和差与和差化积公式,这些公式只是作为基本训练的素材,结果不要求记忆,更不要求运用)32简单的三角恒等变换基本要求。能利用和、差、倍角的公式进行基本的变形,并证明三角恒等式。能利用三角恒等变换研究三角函数的性质。能把一些实际问题化为三角问题,通过三角变换解决。发展要求。了解和、差、倍角公式的特点,并进行变形应用。理解三角变换的基本特点和基本功能。了解三角变换中蕴藏的数学思想和方法。教学反思 备长签名:刘金坤

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3