ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:1.16MB ,
资源ID:687142      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-687142-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》宁夏固原市隆德县2021届高三上学期期末考试数学(理)试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》宁夏固原市隆德县2021届高三上学期期末考试数学(理)试题 WORD版含解析.doc

1、2021届高三数学第一学期期末考试数学试卷卷I(选择题) 一、选择题(本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1. 已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据交集子集的概念即可得到答案【详解】集合, 故选:A2. 设,则A. B. C. D. 【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运

2、算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 在中,为边上的中线,为的中点,则A. B. C. D. 【答案】A【解析】【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【详解】根据向量的运算法则,可得 ,所以,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.4. ,且,则( )A. B. C. D. 【

3、答案】C【解析】【分析】根据题中条件,由不等式的性质,逐项判断,即可得出结果.【详解】因为,且,所以,;故C正确;若,则,故A错;若,则,故B错;若,则与无意义,故D错;故选:C.5. 已知 (0,),2sin2=cos2+1,则sin=A. B. C. D. 【答案】B【解析】【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案【详解】,又,又,故选B【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉6. 执行如图

4、所示的程序框图,输出的s值为A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据程序框图中的条件逐次运算即可.【详解】运行第一次, , ,运行第二次, , ,运行第三次, , ,结束循环,输出 ,故选B【点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.7. 已知数列an满足a1=1,an+1=2an,则a4=( )A. 4B. 8C. 16D. 32【答案】B【解析】【分析】由已知可得通项公式,即可求a4的值.【详解】由题意an+1=2an可知,数列an是首项为1,公比为2的等比数列,故可得数列的通项公式为, 故选:B.【点睛】本题考查了等比数列,由定义法求等比

5、数列通项公式,进而求项,属于简单题.8. 函数在区间上的图象大致为( )A. B. C. D. 【答案】C【解析】【分析】先求出函数的奇偶性,可判断AB错误;再取特殊值可判断D错误.【详解】因为,则,即为偶函数,其函数图象关于轴对称,据此可知选项AB错误;且当时,据此可知选项D错误.故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.9. 已知,则的最小值是( )A. B. 4C. D. 5

6、【答案】C【解析】【分析】利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得的最小值.【详解】因为,所以(当且仅当,即时等号成立).所以的最小值是.故选:C【点睛】本题主要考查利用基本不等式求最值,其中解答中熟记基本不等式求最值的条件“一正、二定、三相等”,准确运算是解答的关键,着重考查推理与运算能力.10. 已知向量 ,满足,则( )A. B. C. D. 【答案】D【解析】【分析】计算出、的值,利用平面向量数量积可计算出的值.【详解】,.,因此,.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.11

7、. 某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,、为常数),若该食品在0的保鲜时间是192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是( )小时A. 22B. 23C. 24D. 33【答案】C【解析】由题意可得:,解得:该食品在33的保鲜时间是24小时故选C12. 已知定义在上的函数,是的导函数,满足,且,则的解集是( )A B. C. D. 【答案】C【解析】【分析】由导数公式得出,从而得出函数的单调性,将不等式可化为,利用单调性解不等式即可.【详解】因为,所以函数在区间上单调递减不等式可化为,即,解得故选:C【点睛】关键点睛:解决本题

8、的关键是由导数公式得出函数的单调性,利用单调性解不等式.卷II(非选择题) 二、填空题(本题共计4小题,每题5分 ,共计20分 ) 13. 已知,向量,若与共线,则_.【答案】【解析】【分析】首先求出,再根据平面向量共线的坐标公式计算即可得到答案.【详解】,因为与共线,所以,解得.故答案为:14. 若,满足约束条件,则的最大值为_【答案】6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束

9、条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15. 已知向量的夹角为,则_.【答案】【解析】【分析】由平面向量数量积定义求得,利用,结合平面向量数量积的运算律可求得结果

10、.【详解】,.故答案:.16. 定义在实数集R上的函数满足,且,现有以下三种叙述:8是函数的一个周期;的图象关于直线对称;是偶函数其中正确序号是_ .【答案】【解析】试题分析:由,得,则,即4是的一个周期,8也是的一个周期;由,得的图像关于直线对称;由与,得,即,即函数为偶函数.考点:1.函数的奇偶性;2.函数的对称性;3.函数的周期性.三、解答题(本题共计6小题,共计70分 ) 17. 已知等差数列an中,a1=1,a3=3()求数列an的通项公式;()若数列an的前k项和Sk=35,求k的值【答案】()an=1+(n1)(2)=32n()k=7【解析】试题分析:(I)设出等差数列的公差为d

11、,然后根据首项为1和第3项等于3,利用等差数列的通项公式即可得到关于d的方程,求出方程的解即可得到公差d的值,根据首项和公差写出数列的通项公式即可;(II)根据等差数列的通项公式,由首项和公差表示出等差数列的前k项和的公式,当其等于35得到关于k的方程,求出方程的解即可得到k的值,根据k为正整数得到满足题意的k的值解:(I)设等差数列an的公差为d,则an=a1+(n1)d由a1=1,a3=3,可得1+2d=3,解得d=2,从而,an=1+(n1)(2)=32n;(II)由(I)可知an=32n,所以Sn=2nn2,进而由Sk=35,可得2kk2=35,即k22k35=0,解得k=7或k=5,

12、又kN+,故k=7为所求点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题18. 的内角A,B,C的对边分别为a,b,c.已知.(1)求角C;(2)若,求的周长.【答案】(1)(2)【解析】【分析】【详解】试题分析:(1)根据正弦定理把化成,利用和角公式可得从而求得角;(2)根据三角形的面积和角的值求得,由余弦定理求得边得到的周长.试题解析:(1)由已知可得(2)又,的周长为考点:正余弦定理解三角形.19. 已知向量(1)若,求x的值;(2)记,求函数yf(x)的最大值和最小值及对应的x的值【答案】(1)(2)时,取到最大值3; 时,取到最小值.【解析】【分析】

13、(1)根据,利用向量平行的充要条件建立等式,即可求x的值(2)根据求解求函数yf(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值【详解】解:(1)向量由,可得:,即,x0,(2)由x0,当时,即x0时f(x)max3;当,即时【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键20. 等比数列an的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列an的通项公式.(2)设bn=log3a1+log3a2+log3an,求数列的前n项和.【答案】(1) (2)【解析】【分析】(1)利用等比中项的性质

14、可得,代入可求得的值,代入,可求出的值,从而求出通项公式.(2)把代入可得,取到数裂项相消可求出的前项和.【详解】解:(1),即,所以,又因为所以又因为,所以,所以.所以(2) 因为所以 设数列的前项和为,则所以的前项和为.【点睛】易错点睛:裂项相消时注意前后的保留项(1)前面保留的项数和后面保留的项数要一致;(2)裂项相消时注意常数的提取,一般情况下分母的差是几,所提常数就是几.21. 已知函数且.(1)求a;(2)证明:存在唯一的极大值点,且.【答案】(1)a=1;(2)见解析.【解析】【分析】(1)通过分析可知f(x)0等价于h(x)axalnx0,进而利用h(x)a可得h(x)minh

15、(),从而可得结论;(2)通过(1)可知f(x)x2xxlnx,记t(x)f(x)2x2lnx,解不等式可知t(x)mint()ln210,从而可知f(x)0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0可知f(x0),另一方面可知f(x0)f()【详解】(1)解:因为f(x)ax2axxlnxx(axalnx)(x0),则f(x)0等价于h(x)axalnx0,求导可知h(x)a则当a0时h(x)0,即yh(x)在(0,+)上单调递减,所以当x01时,h(x0)h(1)0,矛盾,故a0因为当0x时h(x)0、当x时h(x)0,所以h(x)minh(),又因为h(1)aaln10

16、,所以1,解得a1;另解:因为f(1)0,所以f(x)0等价于f(x)在x0时的最小值为f(1),所以等价于f(x)在x1处是极小值,所以解得a1;(2)证明:由(1)可知f(x)x2xxlnx,f(x)2x2lnx,令f(x)0,可得2x2lnx0,记t(x)2x2lnx,则t(x)2,令t(x)0,解得:x,所以t(x)在区间(0,)上单调递减,在(,+)上单调递增,所以t(x)mint()ln210,从而t(x)0有解,即f(x)0存在两根x0,x2,且不妨设f(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+)上为正,所以f(x)必存在唯一极大值点x0,且2x02lnx0

17、0,所以f(x0)x0x0lnx0x0+2x02x0,由x0可知f(x0)(x0)max;由f()0可知x0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)f();综上所述,f(x)存在唯一的极大值点x0,且e2f(x0)22【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题22. 在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为 (1)求直线与曲线的普通方程;(2)若直线与曲线交于,两点,且,求【答案】(1)曲线的普通方程为,直线的普通方程为;(2)或2.【解析】【分析】(1)利用消去参数可得曲线的普通方程,将代入直线方程可得直线的普通方程;(2)求出圆心到直线的距离,利用圆的弦长公式建立关系可求出.【详解】(1)由得,平方相加利用消去参数可得,故曲线的普通方程为,将代入直线方程得,故直线的普通方程为;(2)可知曲线是以为圆心,3为半径的圆,则圆心到直线的距离,解得或2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3