第三十六教时教材:已知三角函数值求角(反正弦,反余弦函数)目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。过程:一、简单理解反正弦,反余弦函数的意义。xy0由1在R上无反函数。2在上, x与y是一一对应的,且区间比较简单在上,的反函数称作反正弦函数,记作,(奇函数)。xy0同理,由在上,的反函数称作反余弦函数,记作二、已知三角函数求角首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。例一、1、已知,求x解:在上正弦函数是单调递增的,且符合条件的角只有一个 (即)2、已知解:,是第一或第二象限角。 即()。3、已知解:x是第三或第四象限角。(即 或 )这里用到是奇函数。例二、1、已知,求解:在上余弦函数是单调递减的,且符合条件的角只有一个 2、已知,且,求x的值。解:,x是第二或第三象限角。3、已知,求x的值。解:由上题:。介绍:上题例三、(见课本P74-P75)略。三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x,3、由诱导公式,求出符合条件的其它象限的角。四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。