ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:874.50KB ,
资源ID:682540      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-682540-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》天津市耀华中学2018-2019学年高二下学期期中考试数学试卷 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》天津市耀华中学2018-2019学年高二下学期期中考试数学试卷 WORD版含解析.doc

1、天津市耀华中学2018-2019学年度第二学期期中形成性检测高二年级数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,其中是实数,则( )A. 1B. C. D. 2【答案】B【解析】【分析】根据复数相等充要条件,求得,再由复数模的计算公式,即可求解.【详解】由题意知,复数满足,可得,解得,所以,故选B.【点睛】本题主要考查了复数相等的充要条件,以及复数模的计算,其中解答中熟记复数相等的充要条件和复数模的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知在复平面内对应的点在第四象限,则实数m的取

2、值范围是A. B. C. D. 【答案】A【解析】试题分析:要使复数对应的点在第四象限,应满足,解得,故选A.【考点】 复数的几何意义【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可复数zabi复平面内点Z(a,b)(a,bR)复数zabi(a,bR)平面向量.【此处有视频,请去附件查看】3.已知,则()A. B. C. D. 【答案】A【解析】【分析】先求出,令,求出后,导函数即可确定,再求【详解】,令,得,故选A【点睛】本题考查函数与导数,求导公式的应用及函数值求解本题求出是关键步骤4.

3、已知,等于( )A. 1B. -1C. 3D. 【答案】C【解析】【分析】根据导数概念,得到,即可求出结果.【详解】因为,所以.故选C【点睛】本题主要考查导数的概念,熟记导数的概念即可,属于常考题型.5.函数,则()A. 为函数的极大值点B. 为函数的极小值点C. 为函数的极大值点D. 为函数的极小值点【答案】A【解析】,故当时函数单调递增,当时,函数单调递减,故为函数的极大值点6.函数在点处的切线斜率为,则的最小值是( )A. 10B. 9C. 8D. 【答案】B【解析】对函数求导可得,根据导数的几何意义,即=()=+52+5=4+5=9,当且仅当即时,取等号.所以最小值是9.故选B.点睛:

4、本题主要考查导数的几何意义,求分式的最值结合了重要不等式,“1”的巧用,注意取等条件7.若函数在上是单调函数,则a的取值范围是A. B. C. D. 【答案】B【解析】【分析】由求导公式和法则求出,由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数后,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围【详解】由题意得,因为在上是单调函数,所以或在上恒成立,当时,则在上恒成立,即,设,因为,所以,当时,取到最大值为0,所以;当时,则在上恒成立,即,设,因为,所以,当时,取到最小值为,所以,综上可得,或,所以数a的取值范围是本题选择B选项.【点睛】本题主要考查

5、导数研究函数的的单调性,恒成立问题的处理方法,二次函数求最值的方法等知识,意在考查学生的转化能力和计算求解能力.8.设点P是曲线上的任意一点,点P处切线的倾斜角为,则角的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】求导后通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,求出倾斜角的取值范围【详解】或则角的取值范围为故选【点睛】本题主要考查了导数的几何意义,求导后解得直线的倾斜角与斜率,属于基础题。9.若函数在区间内存在单调递增区间,则实数的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】先将函数在区间内存在单调递增区间,转化

6、为在区间上有解,再转化为,进而可求出结果.【详解】因为在区间内存在单调递增区间,所以在区间上成立,即在区间上有解,因此,只需,解得.故选D【点睛】本题主要考查由导数在某区间内的单调性求参数的问题,只需对函数求导,利用导数的方法研究函数单调性即可,属于常考题型.10.用数学归纳法证明:“”.从“到”左端需增乘的代数式为( )A. B. C. D. 【答案】B【解析】【分析】分别写出当和当时,左端的式子,两式相除即可得出结果.【详解】当时,左端;当时,左端,所以左端增乘的代数式.故选B【点睛】本题主要考查数学归纳法,会分析式子的增量即可,属于常考题型.11.由0,1,2,3,4,5这六个数字可以组

7、成没有重复数字且能被5整除5位数的个数是( )A. 144B. 192C. 216D. 240【答案】C【解析】【分析】由题意可得,满足条件的五位数,个位数字只能是0或5,分别求出个位数字是0或5时,所包含的情况,即可得到结果.【详解】因为由0,1,2,3,4,5组成的没有重复数字且能被5整除的5位数,个位数字只能是0或5,万位不能是0;当个位数字是0时,共有种可能;当个位数字是5时,共有种情况;因此,由0,1,2,3,4,5这六个数字可以组成没有重复数字且能被5整除的5位数的个数是个.故选C【点睛】本题主要考查排列问题,根据特殊问题优先考虑的原则,即可求解,属于常考题型.12.已知函数,则的

8、图象大致为()A. B. C. D. 【答案】A【解析】【分析】利用特殊值,对函数图像进行排除,由此得出正确选项.【详解】由于,排除B选项.由于,函数单调递减,排除C选项.由于,排除D选项.故选A.【点睛】本小题主要考查已知具体函数的解析式,判断函数的图像,属于基础题.二、填空题(本大题共4小题,每小题4分,共16.0分)答案填入答题卡中13.复数(为虚数单位)的共轭复数是_【答案】【解析】【分析】先由复数的除法运算化简,再根据共轭复数的概念,即可得出结果.【详解】因为,所以,其共轭复数为.故答案为【点睛】本题主要考查复数的除法运算,以及共轭复数,熟记除法运算法则,与共轭复数的概念,即可求解,

9、属于常考题型.14.若复数满足,其中i是虚数单位,则的实部为_【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.15.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,小丁同学理科成绩较好,决定至少选择两门理科学科,那么小丁同学的选科方案有_种【答案】10【解析】【分析】分类讨论:选择两门理科学科,一门文科学科;选择三门理科学科,即可得出结论【详解】选择两门理

10、科学科,一门文科学科,有种;选择三门理科学科,有1种,故共有10种故答案为:10【点睛】本题考查计数原理的应用,考查学生的计算能力,比较基础16.定义在上的函数满足,则不等式的解集为_【答案】【解析】由,得,设,则.故函数在上单调递增,又,故的解集为,即的解集为.点睛:由函数值的大小,根据单调性就可以得自变量的大小关系.本题中只需构造函数,求导得到单调性,进而将不等式转化为求解即可.三、解答题(本大题共2小题,每小题12分,共24.0分)答案填入答题卡中17.已知函数(1)讨论的单调性;(2)若,求a的取值范围【答案】(1)见解析(2)【解析】试题分析:(1)先求函数导数,再按导函数零点讨论:

11、若,无零点,单调;若,一个零点,先减后增;若,一个零点,先减后增;(2)由单调性确定函数最小值:若,满足;若,最小值为,即;若,最小值为,即,综合可得的取值范围为.试题解析:(1)函数的定义域为,若,则,在单调递增. 若,则由得. 当时,;当时,所以在单调递减,在单调递增. 若,则由得.当时,;当时,故在单调递减,在单调递增. (2)若,则,所以. 若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时,. 若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时.综上,的取值范围为.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数

12、的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.18.己知函数的图象在点处的切线方程为.()用表示出;()若在上恒成立,求的取值范围;()证明: 【答案】(),;();(III)见解析.【解析】试题分析:(1)通过函数的导数,利用导数数值就是切线的斜率,切点在切线上,求出即可;(2)利用,构造函数,问题可转化为在上恒成立,利用导数求出函数上最小值大于,即可求出的取值范围;(3)由(1)可知时,在上恒成立,则当时,在上恒成立,对不

13、等式的左侧每一项裂项,然后求和,即可推出要证的结论;或利用数学归纳法的证明步骤,证明不等式成立即可试题解析:(1),则有,解得,(2)由(1)知,令,则,当时,若,则是减函数,所以,即,故在上不恒成立当时,若,则是增函数,所以,即,故当时,综上所述,所求的取值范围为(3)解法一:由(2)知:当时,有,令,有,且当时,令,有,即将上述个不等式依次相加得,整理得解法二:用数学归纳法证明(1)当时,左边=1,右边=,不等式成立(2)假设时,不等式成立,就是、那么由(2)知:当时,有,令,有令,得:,这就是说,当时,不等式也成立根据(1)和(2),可知不等式对任何都成立考点:函数的恒成立;利用导数在闭区间上函数的最值;领用导数研究曲线上某点切线方程;数学归纳法及数列求和【方法点晴】本题主要考查了函数与导数的关系、曲线切线方程的求解、函数恒成立问题的应用、同时涉及到累加法与裂项法的应用、数学归纳法的应用等知识,知识综合能力较强,方法多样、思维量与运算大,属于难题,需要仔细审题、认真解答,同时着重考查了转化与化归思想及分类讨论思想的应用,本题的解答中,利用,构造函数,问题可转化为在上恒成立,利用导数求出函数上最小值大于,即可求出的取值范围;第三问中可对不等式的左侧每一项裂项,然后求和,即可推出要证的结论;或利用数学归纳法的证明步骤,证明不等式成立即可

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3