收藏 分享(赏)

2021秋七年级数学上册 第2章 整式加减2.2 整式加减 1合并同类项学案(新版)沪科版.doc

上传人:高**** 文档编号:681409 上传时间:2024-05-30 格式:DOC 页数:5 大小:38.50KB
下载 相关 举报
2021秋七年级数学上册 第2章 整式加减2.2 整式加减 1合并同类项学案(新版)沪科版.doc_第1页
第1页 / 共5页
2021秋七年级数学上册 第2章 整式加减2.2 整式加减 1合并同类项学案(新版)沪科版.doc_第2页
第2页 / 共5页
2021秋七年级数学上册 第2章 整式加减2.2 整式加减 1合并同类项学案(新版)沪科版.doc_第3页
第3页 / 共5页
2021秋七年级数学上册 第2章 整式加减2.2 整式加减 1合并同类项学案(新版)沪科版.doc_第4页
第4页 / 共5页
2021秋七年级数学上册 第2章 整式加减2.2 整式加减 1合并同类项学案(新版)沪科版.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、合并同类项【学习目标】:1理解同类项的概念,在具体情景中,认识同类项。2初步体会数学与人类生活的密切联系。【学习重点】:理解同类项的概念。【学习难点】:根据同类项的概念在多项式中找同类项。【导学指导】: 一知识链接1运用有理数的运算律计算:(1)1002+2522=_,(2)100(-2)+252(-2)=_,(3)100t+252t=_,思路点拨:根据逆用乘法对加法的分配律可得。2.请根据上面得到结论的方法探究下面各式的结果:(1)100t252t=( )t(2)3x2 2 x2 = ( ) x2(3)3ab2 4 ab2 = ( ) ab2 上述运算有什么共同特点,你能从中得出什么规律?二

2、自主学习同类项的定义:1.观察:3x2 和 2 x2 ; 3ab2 与 4 ab2 在结构上有哪些相同点和不同点?2.归纳:_叫做同类项_也是同类项。如3和-5是同类项【课堂练习】:1、判断下列说法是否正确,正确地在括号内打“”,错误的打“”。(1)3x与3mx是同类项。 ( ) (2)2ab与5ab是同类项。 ( )(3)3x2y与yx2是同类项。 ( ) (4)5ab2与2ab2c是同类项。 ( )(5)23与32是同类项。 ( )2、下列各组式子中,是同类项的是( )A、与 B、与 C、与 D、与3、在下列各组式子中,不是同类项的一组是( )A、 2 ,5 B、 0.5xy2, 3x2y

3、 C、 3t,200t D、 ab2,b2 a4、已知xmy2与5ynx3是同类项,则m= ,n= 。5、指出下列多项式中的同类项:(1)3x2y13y2x5; (2)3x2y2xy2xy2yx2;6、游戏:规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。要求出题同学尽可能使自己的题目与众不同。请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。【要点归纳】: 1. 同类项的概念: 2.注意:两个相同:字母相同;相同字母的指数相等。 两个无关:与系数无关;与字母顺序无关。 所有的常数项都是同类项。两个项虽然所含字母相同,但相同字母的

4、指数不全相同就不是同类项。 【拓展训练】:1、若和是同类项,则m=_,n=_。2、若把(st)、(st)分别看作一个整体,指出下面式子中的同类项。(1)(st)(st)(st)(st); (2)2(st)3(st)25(st)8(st)2(st)。3、观察下列一串单项式的特点: , , , , ,(1)按此规律写出第6个单项式.(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【总结反思】:课题:2.2合并同类项【学习目标】:理解合并同类项的概念,掌握合并同类项的法则。【重点难点】:正确合并同类项。【导学指导】一、知识链接1下列各组式子中是同类项的是( ) A-2a与a2 B2a2b与

5、3ab2 C5ab2c与-b2ac D-ab2和4ab2c2、思考 6个人+4个人= 6只羊+4只羊= 6个人+4只羊=二自主探究1.思考:具备什么特点的多项式可以合并呢?2.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并例如,4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)= (交换律)= (结合律)= (分配律)=把多项式中的同类项合并成一项,叫做合并同类项 3. 合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系? 归纳:(1)合并同类项法则:在合并同类项时,把同类项的系数相加,字

6、母和字母的指数保持不变。 (2) 若两个同类项的系数互为相反数,则两项的和等于零,如-3ab2+3ab2=(-3+3)ab2=0ab2=0。 多项式中只有同类项才能合并,不是同类项不能合并。 例1合并下列各式的同类项: (1)xy2-xy2; (2)-3x2y+2x2y+3xy2-2xy2; (3)4a2+3b2+2ab-4a2-4b2解: 例2(1)求多项式2x2-5x+x2 +4x-3x2 - 2的值,其中x=。 (2)求多项式3a+abc-c2-3a+c2的值,其中a=-,b=2,c=-3。 解:(1)2x2-5x+x2+4x-3x2-2 (仔细观察,标出同类项)(2)3a+abc-3a 例3(学生自学)【课堂练习】1.下列各题合并同类项的结果对不对?若不对,请改正。(1)2x23x2=5x4; (2)3x2y=5xy; (3)7x23x2=4; (4)9a2b9ba2=0。 2.课本练习第1、2、3题( 教师巡视,关注中下程度的学生,适时给予指导,学生独立练习,选择中等程度的学生上黑板演算)。 【要点归纳】: 1. 什么叫合并同类项?2.怎样合并同类项?3.合并同类项的依据是什么?【拓展训练】: 1.求多项式3x24x2x2xx23x1的值,其中x=3。 2求多项式a2b-6ab-3a2b+5ab+2a2b的值,其中a=0.1,b=0.01;【总结反思】:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3