1、 2017届高三第一次检测 数学(理)试题 本试卷分选择题和非选择题两部分共22题,共150分,共2页.考试时间为120分钟.考试结束后,只交答题卡和答题纸.第卷(选择题,共计60分)一、选择题(本大题共12小题,每小题5分)1.若集合,则集合中的元素个数为A.1 B3 C5 D92.设全集,集合,则A. B C D3. 已知函数的图像过点 则A.2 B-2 C3 D-3 4.函数的定义域是A. B C D5.设函数的定义域都为且为奇函数,为偶函数,则下列结论中正确的是A. 是偶函数 B 是奇函数C 是奇函数 D 是奇函数6.已知命题,下列命题中,真命题是A. B C D7.命题“的否定是A.
2、 B C D8.是的A充要条件 B充分而不必要条件 C必要而不充分条件 D既不充分也不必要条件 9.已知函数是定义在上的奇函数,当时, 则A.-3 B-1 C1 D3 10.命题若 则的逆否命题是A. 若 则 B若 则 C若 则 D若 则 11. 已知函数的图像关于点对称,且当时,则当时的解析式为A. B C D12. 已知函数其中,若存在唯一的整数使得,则的取值范围是A B C D第卷(非选择题,共计90分)二、填空题(本大题共4小题,每小题5分,共20分)13.函数的值域为 .14.函数的减区间为 .15.设函数满足,则 .16.已知函数 若 ,则实数的取值范围是 .三、解答题(本大题共6
3、小题,共70分)17. (本小题10分)直角坐标系 中,直线,圆,以坐标原点为极点,轴的正半轴为极轴建立极坐标系()求的极坐标方程;()若直线的极坐标方程为,设交于点求的面积.18. (本小题12分)已知 为半圆(为参数,)上的点,点的坐标为,为坐标原点,点在射线上,线段与的弧 的长度均为()以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标;()求直线的参数方程.19. (本小题12分)已知函数()若不等式的解集为求的值;()在()的条件下,若对一切实数恒成立,求实数的取值范围.20. (本小题12分)已知函数,记的解集为,的解集为()求;()当时证明.21. (本小题12分)设函数()求的单调递增区间;()证明:当时.22. (本小题12分) 已知函数(为常数)()若是函数的一个极值点,求的值;()当时,试判断的单调性;()若对任意的,使不等式恒成立,求实数的取值范围.